Solveeit Logo

Question

Question: If \(\omega\)is a cube root of unity, then \(\left| \begin{matrix} x + 1 & \omega & \omega^{2} \\ \o...

If ω\omegais a cube root of unity, then x+1ωω2ωx+ω21ω21x+ω=\left| \begin{matrix} x + 1 & \omega & \omega^{2} \\ \omega & x + \omega^{2} & 1 \\ \omega^{2} & 1 & x + \omega \end{matrix} \right| =

A

x3+1x^{3} + 1

B

x3+ωx^{3} + \omega

C

x3+ω2x^{3} + \omega^{2}

D

x3x^{3}

Answer

x3x^{3}

Explanation

Solution

Δ=x+1ωω2ωx+ω21ω21x+ω\Delta = \left| \begin{matrix} x + 1 & \omega & \omega^{2} \\ \omega & x + \omega^{2} & 1 \\ \omega^{2} & 1 & x + \omega \end{matrix} \right|

=x+1+ω+ω2ωω2x+1+ω+ω2x+ω21x+1+ω+ω21x+ω\left| \begin{matrix} x + 1 + \omega + \omega^{2} & \omega & \omega^{2} \\ x + 1 + \omega + \omega^{2} & x + \omega^{2} & 1 \\ x + 1 + \omega + \omega^{2} & 1 & x + \omega \end{matrix} \right|,(C1C1+C2+C3)(C_{1} \rightarrow C_{1} + C_{2} + C_{3})

= x1ωω21x+ω2111x+ωx\left| \begin{matrix} 1 & \omega & \omega^{2} \\ 1 & x + \omega^{2} & 1 \\ 1 & 1 & x + \omega \end{matrix} \right| 1aa21bb21cc20\left| \begin{matrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{matrix} \right| \neq 0

= x[1{(x+ω2)(x+ω)1}+ω{1(x+ω)}+ω2{1(x+ω2)}]x\lbrack 1\{(x + \omega^{2})(x + \omega) - 1\} + \omega\{ 1 - (x + \omega)\} + \omega^{2}\{ 1 - (x + \omega^{2})\}\rbrack

= x(x2+ωx+ω2x+ω31+ωωxω2+ω2ω2xω4)x(x^{2} + \omega x + \omega^{2}x + \omega^{3} - 1 + \omega - \omega x - \omega^{2} + \omega^{2} - \omega^{2}x - \omega^{4})

= x3x^{3} , (ω3=1)(\because\omega^{3} = 1).