Question
Question: If \(\omega\)is a cube root of unity, then \(\left| \begin{matrix} x + 1 & \omega & \omega^{2} \\ \o...
If ωis a cube root of unity, then x+1ωω2ωx+ω21ω21x+ω=
A
x3+1
B
x3+ω
C
x3+ω2
D
x3
Answer
x3
Explanation
Solution
Δ=x+1ωω2ωx+ω21ω21x+ω
=x+1+ω+ω2x+1+ω+ω2x+1+ω+ω2ωx+ω21ω21x+ω,(C1→C1+C2+C3)
= x111ωx+ω21ω21x+ω 111abca2b2c2=0
= x[1{(x+ω2)(x+ω)−1}+ω{1−(x+ω)}+ω2{1−(x+ω2)}]
= x(x2+ωx+ω2x+ω3−1+ω−ωx−ω2+ω2−ω2x−ω4)
= x3 , (∵ω3=1).