Solveeit Logo

Question

Question: If \(\omega\)is a complex cube root of unity, then value of expression \(\cos\left\lbrack \left\{ (1...

If ω\omegais a complex cube root of unity, then value of expression cos[{(1ω)(1ω)2+......+(10ω)(10ω2)}π900]\cos\left\lbrack \left\{ (1 - \omega)(1 - \omega)^{2} + ...... + (10 - \omega)\left( 10 - \omega^{2} \right) \right\}\frac{\pi}{900} \right\rbrack

A

-1

B

0

C

1

D

32\frac{\sqrt{3}}{2}

Answer

0

Explanation

Solution

Sol. We have (kω)(kω)2=k2k(ω+ω2)+ω3(k - \omega)(k - \omega)^{2} = k^{2} - k\left( \omega + \omega^{2} \right) + \omega^{3}

= k2k(1)+1=k2+k+1k^{2} - k( - 1) + 1 = k^{2} + k + 1

k=110(kω)(kω)2=k=110(k2+k+1)\sum_{k = 1}^{10}{(k - \omega)(k - \omega)^{2}} = \sum_{k = 1}^{10}\left( k^{2} + k + 1 \right)

=10 x 11 x 216+10 x 112+10=385+55+10=450\frac{10\text{ x 11 x 21}}{6} + \frac{10\text{ x 11}}{2} + 10 = 385 + 55 + 10 = 450Thus, cos[{k=110(kω)(kω)2}π900]=cos(450900π)=0\cos\left\lbrack \left\{ \sum_{k = 1}^{10}{(k - \omega)(k - \omega)^{2}} \right\}\frac{\pi}{900} \right\rbrack = \cos\left( \frac{450}{900}\pi \right) = 0.