Solveeit Logo

Question

Question: If \(\omega\)is a complex cube root of unity, then the determinant\(\left| \begin{matrix} 2 & 2\omeg...

If ω\omegais a complex cube root of unity, then the determinant22ωω2111110=\left| \begin{matrix} 2 & 2\omega & - \omega^{2} \\ 1 & 1 & 1 \\ 1 & - 1 & 0 \end{matrix} \right| =.

A

0

B

1

C

– 1

D

None of these

Answer

0

Explanation

Solution

Δ22ωω2111110=2+2ω+2ω22ωω21+121111010\Delta \equiv \left| \begin{matrix} 2 & 2\omega & - \omega^{2} \\ 1 & 1 & 1 \\ 1 & - 1 & 0 \end{matrix} \right| = \left| \begin{matrix} 2 + 2\omega + 2\omega^{2} & 2\omega & - \omega^{2} \\ 1 + 1 - 2 & 1 & 1 \\ 1 - 1 - 0 & - 1 & 0 \end{matrix} \right|

(C1C1+C22C3)(C_{1} \rightarrow C_{1} + C_{2} - 2C_{3})

= 02ωω2011010=0\left| \begin{matrix} 0 & 2\omega & - \omega^{2} \\ 0 & 1 & 1 \\ 0 & - 1 & 0 \end{matrix} \right| = 0.