Solveeit Logo

Question

Question: If \(\omega \) (not equal to \(1\)) is a cube root of unity and \({\left( {1 + {\omega ^2}} \right)^...

If ω\omega (not equal to 11) is a cube root of unity and (1+ω2)n=(1+ω4)n{\left( {1 + {\omega ^2}} \right)^n} = {\left( {1 + {\omega ^4}} \right)^n}, then the least positive value of nn is

  1. 22
  2. 33
  3. 55
  4. 66
Explanation

Solution

First we have to find the value of ω\omega , by finding the cube root of 11. Then we will substitute the suitable value of the cube root of 11 in the condition given to us in the question. Then, on performing suitable conditions we will get a suitable expression that helps us to get the least positive value of nn, which we are asked for in the question.

Complete answer:
Given, ω\omega is a cube root of unity.
So, we can write it as, ω=13\omega = \sqrt[3]{1}
Now, cubing both sides, we get,
ω3=1\Rightarrow {\omega ^3} = 1
Now, taking all the terms on the left hand side, we get,
ω31=0\Rightarrow {\omega ^3} - 1 = 0
We can write 11 as 13{1^3}.
So, doing this, we get,
ω313=0\Rightarrow {\omega ^3} - {1^3} = 0
Using the formula, a3b3=(ab)(a2+ab+b2){a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right), we get,
(ω1)(ω2+ω+1)=0\Rightarrow \left( {\omega - 1} \right)\left( {{\omega ^2} + \omega + 1} \right) = 0
ω1=0\Rightarrow \omega - 1 = 0 or ω2+ω+1=0{\omega ^2} + \omega + 1 = 0
ω=1\Rightarrow \omega = 1 or ω2+ω+1=0{\omega ^2} + \omega + 1 = 0
In the question it is given that, ω1\omega \ne 1.
Therefore, ω2+ω+1=0{\omega ^2} + \omega + 1 = 0
By applying the quadratic roots formula for this equation, we get,
ω=1±124.1.12.1\Rightarrow \omega = \dfrac{{ - 1 \pm \sqrt {{1^2} - 4.1.1} }}{{2.1}}
ω=1±142\Rightarrow \omega = \dfrac{{ - 1 \pm \sqrt {1 - 4} }}{2}
ω=12±32\Rightarrow \omega = - \dfrac{1}{2} \pm \dfrac{{\sqrt { - 3} }}{2}
Now, we know, 1=i\sqrt { - 1} = i
Replacing this value, gives us,
ω=12±1.32\Rightarrow \omega = - \dfrac{1}{2} \pm \dfrac{{\sqrt { - 1} .\sqrt 3 }}{2}
ω=12±i32\Rightarrow \omega = - \dfrac{1}{2} \pm i\dfrac{{\sqrt 3 }}{2}
Therefore, we get, two values of ω\omega , that are,
ω=12+i32\omega = - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2} and ω=12i32\omega = - \dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}
Now, if we take, ω=12+i32\omega = - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2} and squaring both sides, we get,
ω2=(12+i32)2\Rightarrow {\omega ^2} = {\left( { - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}} \right)^2}
ω2=(12)22.12.i32+(i32)2\Rightarrow {\omega ^2} = {\left( { - \dfrac{1}{2}} \right)^2} - 2.\dfrac{1}{2}.i\dfrac{{\sqrt 3 }}{2} + {\left( {i\dfrac{{\sqrt 3 }}{2}} \right)^2}
Now, opening the brackets and simplifying, we get,
ω2=14i32+i234\Rightarrow \Rightarrow {\omega ^2} = \dfrac{1}{4} - i\dfrac{{\sqrt 3 }}{2} + {i^2}\dfrac{3}{4}
We know, i=1i2=1i = \sqrt { - 1} \Rightarrow {i^2} = - 1.
Substituting this value, we get,
ω2=14i3234\Rightarrow {\omega ^2} = \dfrac{1}{4} - i\dfrac{{\sqrt 3 }}{2} - \dfrac{3}{4}
ω2=12i32\Rightarrow {\omega ^2} = - \dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}
This is our second cube root of unity.
Therefore, we can say that, ω=12+i32\omega = - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2} and ω2=12i32{\omega ^2} = - \dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}
Therefore, we are given that, in the question,
(1+ω2)n=(1+ω4)n{\left( {1 + {\omega ^2}} \right)^n} = {\left( {1 + {\omega ^4}} \right)^n}
Therefore, we can write it as,
(1+ω2)n=(1+(ω2)2)n\Rightarrow {\left( {1 + {\omega ^2}} \right)^n} = {\left( {1 + {{\left( {{\omega ^2}} \right)}^2}} \right)^n}
Now, substituting the value of ω2{\omega ^2}, gives us,
(1+(12i32))n=(1+(12i32)2)n\Rightarrow {\left( {1 + \left( { - \dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}} \right)} \right)^n} = {\left( {1 + {{\left( { - \dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}} \right)}^2}} \right)^n}
Now, opening the brackets and simplifying, we get,
(1+12i32)n=(1+((12)22.(12)i32+(i32)2))n\Rightarrow {\left( {1 + - \dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}} \right)^n} = {\left( {1 + \left( {{{\left( { - \dfrac{1}{2}} \right)}^2} - 2.\left( { - \dfrac{1}{2}} \right)i\dfrac{{\sqrt 3 }}{2} + {{\left( { - i\dfrac{{\sqrt 3 }}{2}} \right)}^2}} \right)} \right)^n}
(12i32)n=(1+(14+i32+i234))n\Rightarrow {\left( {\dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}} \right)^n} = {\left( {1 + \left( {\dfrac{1}{4} + i\dfrac{{\sqrt 3 }}{2} + {i^2}\dfrac{3}{4}} \right)} \right)^n}
Simplifying the terms, we get,
(12i32)n=(1+(14+i3234))n\Rightarrow {\left( {\dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}} \right)^n} = {\left( {1 + \left( {\dfrac{1}{4} + i\dfrac{{\sqrt 3 }}{2} - \dfrac{3}{4}} \right)} \right)^n}
[Using, i2=1{i^2} = - 1]
(12i32)n=(1+(12+i32))n\Rightarrow {\left( {\dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}} \right)^n} = {\left( {1 + \left( { - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}} \right)} \right)^n}
(12i32)n=(112+i32)n\Rightarrow {\left( {\dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}} \right)^n} = {\left( {1 - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}} \right)^n}
(12i32)n=(12+i32)n(1)\Rightarrow {\left( {\dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}} \right)^n} = {\left( {\dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}} \right)^n} - - - \left( 1 \right)
Now, we already found,
ω=12+i32\omega = - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}
Multiplying, both sides by 1 - 1, gives us,
ω=12i32\Rightarrow - \omega = \dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}
And, ω2=12i32{\omega ^2} = - \dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}
Again, multiplying both sides by 1 - 1, we get,
ω2=12+i32\Rightarrow - {\omega ^2} = \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}
Now, substituting these values (1)\left( 1 \right), gives us,
(ω)n=(ω2)n\Rightarrow {\left( { - \omega } \right)^n} = {\left( { - {\omega ^2}} \right)^n}
ωn=ω2n\Rightarrow {\omega ^n} = {\omega ^{2n}}
Now, dividing both sides by ωn{\omega ^n}, we get,
1=ω2nωn\Rightarrow 1 = \dfrac{{{\omega ^{2n}}}}{{{\omega ^n}}}
ωn=1\Rightarrow {\omega ^n} = 1
We found that, ω=12+i32\omega = - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2} and ω2=12i32{\omega ^2} = - \dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}.
Therefore, we can write,
ω3=ω.ω2{\omega ^3} = \omega .{\omega ^2}
Substituting the values, gives us,
ω3=(12+i32).(12i32)\Rightarrow {\omega ^3} = \left( { - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}} \right).\left( { - \dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}} \right)
Using, the formula, (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}, we get,
ω3=(12)2(i32)2\Rightarrow {\omega ^3} = {\left( { - \dfrac{1}{2}} \right)^2} - {\left( {i\dfrac{{\sqrt 3 }}{2}} \right)^2}
ω3=14i234\Rightarrow {\omega ^3} = \dfrac{1}{4} - {i^2}\dfrac{3}{4}
We know, i2=1{i^2} = - 1.
So, using that, we get,
ω3=14+34\Rightarrow {\omega ^3} = \dfrac{1}{4} + \dfrac{3}{4}
ω3=1\Rightarrow {\omega ^3} = 1
We earlier had, ωn=1{\omega ^n} = 1.
Therefore, the least value of nn, for which, ωn=1{\omega ^n} = 1 is 33, as ω3=1{\omega ^3} = 1.

Therefore, the correct option is 2.

Note:
We could have also done this problem by using the property of cube roots of unity, ω\omega . The properties of ω\omega gives us directly the equations like (1+ω2)\left( {1 + {\omega ^2}} \right) and many more directly. And also the values like ω3=1{\omega ^3} = 1. So, if these properties are known, one can directly solve them.