Solveeit Logo

Question

Mathematics Question on Determinants

If (ω1)(\omega\,\neq\,1) is a cube root of unity , then 11+i+ω2ω2\[0.3em]1i1ω21\[0.3em]i1+ωi1= \begin{vmatrix} 1 &1+i+\omega^2 &\omega^2 \\\[0.3em] 1-i&-1 & \omega^2-1 \\\[0.3em] -i & -1+\omega-i& -1 \end{vmatrix}=

A

0

B

1

C

i

D

ω\omega

Answer

0

Explanation

Solution

11+i+ω2ω2\[0.3em]1i1ω21\[0.3em]i1+ωi1 \begin{vmatrix} 1 &1+i+\omega^2 &\omega^2 \\\[0.3em] 1-i&-1 & \omega^2-1 \\\[0.3em] -i & -1+\omega-i& -1 \end{vmatrix} Operate R1+R3R2R_1 + R_3 - R_2 000\[0.3em]1i1ω21\[0.3em]i1+ωi1=0 \begin{vmatrix} 0&0 &0 \\\[0.3em] 1-i&-1 & \omega^2-1 \\\[0.3em] -i & -1+\omega-i& -1 \end{vmatrix}= 0 [ \therefore ω2+ω+1=0]\omega^2 + \omega + 1 = 0]