Solveeit Logo

Question

Mathematics Question on Matrices

If ω1\omega \ne 1 is the complex cube root of unity and matrix H=[ω0 0ω] H =\begin{bmatrix}\omega&0\\\ 0&\omega\end{bmatrix}, then H70H^{70} is equal to -

A

0

B

-H

C

H2H^2

D

H

Answer

H

Explanation

Solution

H2=[ω0 0ω][ω0 0ω]=[ω20 0ω2]H^{2} = \begin{bmatrix}\omega&0\\\ 0&\omega\end{bmatrix}\begin{bmatrix}\omega &0\\\ 0&\omega \end{bmatrix} = \begin{bmatrix}\omega^{2} &0\\\ 0&\omega^{2} \end{bmatrix} If Hk=[ωk0 0ωk]H^{k} = \begin{bmatrix}\omega^{k} &0\\\ 0&\omega^{k} \end{bmatrix}, then Hk+1=[ωk+10 0ωk+1]H^{k+1} = \begin{bmatrix}\omega^{k+1} &0\\\ 0&\omega^{k+1} \end{bmatrix} So by mathematical induction, H70=[ω700 0ω70]=[ω0 0ω]=H H^{70} = \begin{bmatrix}\omega ^{70} &0\\\ 0&\omega ^{70} \end{bmatrix} = \begin{bmatrix}\omega &0\\\ 0&\omega \end{bmatrix} = H