Solveeit Logo

Question

Mathematics Question on Determinants

If ω1\omega \ne 1 is a cube root of unity, then the value of 1+2ω100+ω200 1 ωω2 1+ω100+2ω200 ω21 ω 1+ω100+2ω200\left| \begin{matrix} 1+2{{\omega }^{100}}+{{\omega }^{200}} \\\ 1 \\\ \omega \\\\\end{matrix}\begin{matrix} {{\omega }^{2}} \\\ 1+{{\omega }^{100}}+2{{\omega }^{200}} \\\ {{\omega }^{2}} \\\\\end{matrix}\begin{matrix} 1 \\\ \omega \\\ 1+{{\omega }^{100}}+2{{\omega }^{200}} \\\\\end{matrix} \right| is equal to

A

00

B

11

C

ω\omega

D

ω2{{\omega }^{2}}

Answer

00

Explanation

Solution

Let Δ=1+2ω100+ω200ω2 11+ω100+2ω200 ωω2 \Delta =\left| \begin{matrix} 1+2{{\omega }^{100}}+{{\omega }^{200}} & {{\omega }^{2}} \\\ 1 & 1+{{\omega }^{100}}+2{{\omega }^{200}} \\\ \omega & {{\omega }^{2}} \\\ \end{matrix} \right. 1 ω 2+ω100+ω200 \left. \begin{matrix} 1 \\\ \omega \\\ 2+{{\omega }^{100}}+{{\omega }^{200}} \\\ \end{matrix} \right|
=1+2ω+ω2ω21 11+ω+2ω2ω ωω22+ω+ω2 =\left| \begin{matrix} 1+2\omega +{{\omega }^{2}} & {{\omega }^{2}} & 1 \\\ 1 & 1+\omega +2{{\omega }^{2}} & \omega \\\ \omega & {{\omega }^{2}} & 2+\omega +{{\omega }^{2}} \\\ \end{matrix} \right|
=ωω21 1ω2ω ωω21 =\left| \begin{matrix} \omega & {{\omega }^{2}} & 1 \\\ 1 & {{\omega }^{2}} & \omega \\\ \omega & {{\omega }^{2}} & 1 \\\ \end{matrix} \right|
=0=0 ( \because Rows R1{{R}_{1}} and R3{{R}_{3}} are identical)