Solveeit Logo

Question

Question: If \(\omega \left( { \ne 1} \right)\) be the cube root of unity and \({\left( {1 + {\omega ^2}} \rig...

If ω(1)\omega \left( { \ne 1} \right) be the cube root of unity and (1+ω2)n=(1+ω4)n{\left( {1 + {\omega ^2}} \right)^n} = {\left( {1 + {\omega ^4}} \right)^n}, the least +ve value of n is
(A) 2
(B) 3
(C) 4
(D) 5

Explanation

Solution

Hint: Solve the above equation using 1+ω+ω2=01 + \omega + {\omega ^2} = 0 and ω3x=1{\omega ^{3x}} = 1 conditions.

Complete step-by-step answer:
We know that, if ω\omega is the cube root of unity then,
1+ω+ω2=0\Rightarrow 1 + \omega + {\omega ^2} = 0 \to (1)
ω3x=1\Rightarrow {\omega ^{3x}} = 1 (for all x as positive integer) \to (2)
And it is given that,
(1+ω2)n=(1+ω4)n\Rightarrow {\left( {1 + {\omega ^2}} \right)^n} = {\left( {1 + {\omega ^4}} \right)^n} \to (3)
We, can write ω4=ωω3{\omega ^4} = \omega \cdot {\omega ^3} and we know that ω3=1{\omega ^3} = 1 (from equation 2)
\Rightarrow ω4=ω{\omega ^4} = \omega
Putting the value of ω4{\omega ^4} in equation (3) we get,
(1+ω2)n=(1+ω)n\Rightarrow {\left( {1 + {\omega ^2}} \right)^n} = {\left( {1 + \omega } \right)^n}
From equation (1) we get,
(1+ω2)=ω\Rightarrow \left( {1 + {\omega ^2}} \right) = -\omega
1+ω=ω2\Rightarrow 1 + \omega = - {\omega ^2}
So, putting the value of 1+ω21 + {\omega ^2} and 1+ω1 + \omega in equation (4) we get,
(ω)n=(ω2)n\Rightarrow {\left( { - \omega } \right)^n} = {\left( { - {\omega ^2}} \right)^n}
On solving above equation we get,
(1)nωn=(1)nω2n\Rightarrow {\left( { - 1} \right)^n}{\omega ^n} = {\left( { - 1} \right)^n}{\omega ^{2n}}
ωn=ω2n\Rightarrow {\omega ^n} = {\omega ^{2n}}
ω2nn=1\Rightarrow {\omega ^{2n-n}} = 1
ωn=1\Rightarrow {\omega ^{n}} = 1
Clearly we can see that n=3, is the least value of n satisfying the above equation.
Hence B is the correct option.

Note: Whenever we face these types of problems, remember the properties of the cube root of unity and try to simplify the given expression, it will lead us to the answer.