Solveeit Logo

Question

Question: If $\omega$ is the imaginary cube root of unity such that $|\left(\sum_{r=1}^{n}\left(r \cdot \sum_{...

If ω\omega is the imaginary cube root of unity such that (r=1n(rp=1rωp1))155ω=(r=1n(rp=1rωp1))155ω|\left(\sum_{r=1}^{n}\left(r \cdot \sum_{p=1}^{r} \omega^{p-1}\right)\right)-155\omega|=\left(\sum_{r=1}^{n}\left(r \cdot \sum_{p=1}^{r} \omega^{p-1}\right)\right)-155\omega, then n is equal to -

A

29

B

30

C

31

D

32

Answer

29

Explanation

Solution

Let the given condition be Z=Z|Z|=Z, where Z=(r=1n(rp=1rωp1))155ωZ = \left(\sum_{r=1}^{n}\left(r \cdot \sum_{p=1}^{r} \omega^{p-1}\right)\right)-155\omega. This condition implies that ZZ must be a non-negative real number, i.e., Im(Z)=0Im(Z)=0 and Re(Z)0Re(Z) \ge 0.

First, simplify the inner sum Sr=p=1rωp1S_r = \sum_{p=1}^{r} \omega^{p-1}. Using the property 1+ω+ω2=01+\omega+\omega^2=0:

  • If r1(mod3)r \equiv 1 \pmod 3, Sr=1S_r = 1.
  • If r2(mod3)r \equiv 2 \pmod 3, Sr=1+ω=ω2S_r = 1+\omega = -\omega^2.
  • If r0(mod3)r \equiv 0 \pmod 3, Sr=1+ω+ω2=0S_r = 1+\omega+\omega^2 = 0.

Let X=r=1n(rSr)X = \sum_{r=1}^{n}\left(r \cdot S_r\right). We need Im(X155ω)=0Im(X - 155\omega) = 0, which means Im(X)=155Im(ω)Im(X) = 155 Im(\omega). Since ω=12+i32\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}, Im(ω)=32Im(\omega) = \frac{\sqrt{3}}{2}. So, Im(X)=15532Im(X) = 155 \frac{\sqrt{3}}{2}.

Let's analyze XX based on n(mod3)n \pmod 3. We can express XX in terms of kk, where k=(n1)/3k = \lfloor (n-1)/3 \rfloor.

For n=3kn=3k: X3k=j=0k1((3j+1)S3j+1+(3j+2)S3j+2+(3j+3)S3j+3)X_{3k} = \sum_{j=0}^{k-1} ((3j+1)S_{3j+1} + (3j+2)S_{3j+2} + (3j+3)S_{3j+3}) X3k=j=0k1((3j+1)1+(3j+2)(ω2)+(3j+3)0)X_{3k} = \sum_{j=0}^{k-1} ( (3j+1) \cdot 1 + (3j+2) \cdot (-\omega^2) + (3j+3) \cdot 0 ) X3k=j=0k1(3j+1(3j+2)ω2)=j=0k1(3j(1ω2)+(12ω2))X_{3k} = \sum_{j=0}^{k-1} (3j+1 - (3j+2)\omega^2) = \sum_{j=0}^{k-1} (3j(1-\omega^2) + (1-2\omega^2)) Using 1ω2=2+ω1-\omega^2 = 2+\omega and 12ω2=3+2ω1-2\omega^2 = 3+2\omega: X3k=j=0k1(3j(2+ω)+(3+2ω))=3(2+ω)k(k1)2+k(3+2ω)X_{3k} = \sum_{j=0}^{k-1} (3j(2+\omega) + (3+2\omega)) = 3(2+\omega)\frac{k(k-1)}{2} + k(3+2\omega) X3k=k2(6k+(3k+1)ω)X_{3k} = \frac{k}{2} (6k + (3k+1)\omega). Im(X3k)=k(3k+1)34Im(X_{3k}) = \frac{k(3k+1)\sqrt{3}}{4}. Equating Im(X3k)=15532Im(X_{3k}) = 155 \frac{\sqrt{3}}{2}: k(3k+1)34=15532    k(3k+1)=310    3k2+k310=0\frac{k(3k+1)\sqrt{3}}{4} = 155 \frac{\sqrt{3}}{2} \implies k(3k+1) = 310 \implies 3k^2+k-310=0. Solving for kk: k=1±14(3)(310)6=1±1+37206=1±37216=1±616k = \frac{-1 \pm \sqrt{1-4(3)(-310)}}{6} = \frac{-1 \pm \sqrt{1+3720}}{6} = \frac{-1 \pm \sqrt{3721}}{6} = \frac{-1 \pm 61}{6}. Since kk must be a positive integer, k=1+616=10k = \frac{-1+61}{6} = 10. If k=10k=10, then n=3k=30n=3k=30. For n=30n=30, X30=102(60+31ω)=300+155ωX_{30} = \frac{10}{2} (60+31\omega) = 300+155\omega. Z=X30155ω=(300+155ω)155ω=300Z = X_{30} - 155\omega = (300+155\omega) - 155\omega = 300. Since Z=3000Z=300 \ge 0, n=30n=30 is a valid solution.

For n=3k+1n=3k+1: X3k+1=X3k+(3k+1)S3k+1=X3k+(3k+1)1X_{3k+1} = X_{3k} + (3k+1)S_{3k+1} = X_{3k} + (3k+1) \cdot 1. Im(X3k+1)=Im(X3k)+Im(3k+1)=Im(X3k)Im(X_{3k+1}) = Im(X_{3k}) + Im(3k+1) = Im(X_{3k}). So, k=10k=10 still holds. If k=10k=10, then n=3k+1=3(10)+1=31n=3k+1 = 3(10)+1 = 31. For n=31n=31, X31=X30+31=(300+155ω)+31=331+155ωX_{31} = X_{30} + 31 = (300+155\omega) + 31 = 331+155\omega. Z=X31155ω=(331+155ω)155ω=331Z = X_{31} - 155\omega = (331+155\omega) - 155\omega = 331. Since Z=3310Z=331 \ge 0, n=31n=31 is a valid solution.

For n=3k+2n=3k+2: X3k+2=X3k+1+(3k+2)S3k+2=X3k+1+(3k+2)(ω2)X_{3k+2} = X_{3k+1} + (3k+2)S_{3k+2} = X_{3k+1} + (3k+2)(-\omega^2). Im(X3k+2)=Im(X3k+1)+Im((3k+2)ω2)=Im(X3k)+Im((3k+2)(1+ω))Im(X_{3k+2}) = Im(X_{3k+1}) + Im(-(3k+2)\omega^2) = Im(X_{3k}) + Im((3k+2)(1+\omega)). Im(X3k+2)=k(3k+1)34+(3k+2)32Im(X_{3k+2}) = \frac{k(3k+1)\sqrt{3}}{4} + (3k+2)\frac{\sqrt{3}}{2}. Equating Im(X3k+2)=15532Im(X_{3k+2}) = 155 \frac{\sqrt{3}}{2}: k(3k+1)2+(3k+2)=155    k(3k+1)+2(3k+2)=310\frac{k(3k+1)}{2} + (3k+2) = 155 \implies k(3k+1) + 2(3k+2) = 310 3k2+k+6k+4=310    3k2+7k306=03k^2+k+6k+4 = 310 \implies 3k^2+7k-306=0. Solving for kk: k=7±724(3)(306)6=7±49+36726=7±37216=7±616k = \frac{-7 \pm \sqrt{7^2-4(3)(-306)}}{6} = \frac{-7 \pm \sqrt{49+3672}}{6} = \frac{-7 \pm \sqrt{3721}}{6} = \frac{-7 \pm 61}{6}. Since kk must be a positive integer, k=7+616=9k = \frac{-7+61}{6} = 9. If k=9k=9, then n=3k+2=3(9)+2=29n=3k+2 = 3(9)+2 = 29. For n=29n=29, X29=X3(9)+(3(9)+1)+(3(9)+2)(ω2)X_{29} = X_{3(9)} + (3(9)+1) + (3(9)+2)(-\omega^2). X27=92(6(9)+(3(9)+1)ω)=92(54+28ω)=243+126ωX_{27} = \frac{9}{2}(6(9)+(3(9)+1)\omega) = \frac{9}{2}(54+28\omega) = 243+126\omega. X29=(243+126ω)+2829ω2=271+126ω29(1ω)=271+126ω+29+29ω=300+155ωX_{29} = (243+126\omega) + 28 - 29\omega^2 = 271+126\omega - 29(-1-\omega) = 271+126\omega+29+29\omega = 300+155\omega. Z=X29155ω=(300+155ω)155ω=300Z = X_{29} - 155\omega = (300+155\omega) - 155\omega = 300. Since Z=3000Z=300 \ge 0, n=29n=29 is a valid solution.

All three values n=29,30,31n=29, 30, 31 satisfy the given condition. Since the question is presented as a single-choice question, and all three are options, there might be an implicit constraint not stated, or the question is flawed for a single-choice format. However, if forced to select one, and assuming the smallest possible integer value for nn is expected, then n=29n=29.

The final answer is 29\boxed{\text{29}}.