Question
Question: If $\omega$ is the imaginary cube root of unity such that $|\left(\sum_{r=1}^{n}\left(r \cdot \sum_{...
If ω is the imaginary cube root of unity such that ∣(∑r=1n(r⋅∑p=1rωp−1))−155ω∣=(∑r=1n(r⋅∑p=1rωp−1))−155ω, then n is equal to -

29
30
31
32
29
Solution
Let the given condition be ∣Z∣=Z, where Z=(∑r=1n(r⋅∑p=1rωp−1))−155ω. This condition implies that Z must be a non-negative real number, i.e., Im(Z)=0 and Re(Z)≥0.
First, simplify the inner sum Sr=∑p=1rωp−1. Using the property 1+ω+ω2=0:
- If r≡1(mod3), Sr=1.
- If r≡2(mod3), Sr=1+ω=−ω2.
- If r≡0(mod3), Sr=1+ω+ω2=0.
Let X=∑r=1n(r⋅Sr). We need Im(X−155ω)=0, which means Im(X)=155Im(ω). Since ω=−21+i23, Im(ω)=23. So, Im(X)=15523.
Let's analyze X based on n(mod3). We can express X in terms of k, where k=⌊(n−1)/3⌋.
For n=3k: X3k=∑j=0k−1((3j+1)S3j+1+(3j+2)S3j+2+(3j+3)S3j+3) X3k=∑j=0k−1((3j+1)⋅1+(3j+2)⋅(−ω2)+(3j+3)⋅0) X3k=∑j=0k−1(3j+1−(3j+2)ω2)=∑j=0k−1(3j(1−ω2)+(1−2ω2)) Using 1−ω2=2+ω and 1−2ω2=3+2ω: X3k=∑j=0k−1(3j(2+ω)+(3+2ω))=3(2+ω)2k(k−1)+k(3+2ω) X3k=2k(6k+(3k+1)ω). Im(X3k)=4k(3k+1)3. Equating Im(X3k)=15523: 4k(3k+1)3=15523⟹k(3k+1)=310⟹3k2+k−310=0. Solving for k: k=6−1±1−4(3)(−310)=6−1±1+3720=6−1±3721=6−1±61. Since k must be a positive integer, k=6−1+61=10. If k=10, then n=3k=30. For n=30, X30=210(60+31ω)=300+155ω. Z=X30−155ω=(300+155ω)−155ω=300. Since Z=300≥0, n=30 is a valid solution.
For n=3k+1: X3k+1=X3k+(3k+1)S3k+1=X3k+(3k+1)⋅1. Im(X3k+1)=Im(X3k)+Im(3k+1)=Im(X3k). So, k=10 still holds. If k=10, then n=3k+1=3(10)+1=31. For n=31, X31=X30+31=(300+155ω)+31=331+155ω. Z=X31−155ω=(331+155ω)−155ω=331. Since Z=331≥0, n=31 is a valid solution.
For n=3k+2: X3k+2=X3k+1+(3k+2)S3k+2=X3k+1+(3k+2)(−ω2). Im(X3k+2)=Im(X3k+1)+Im(−(3k+2)ω2)=Im(X3k)+Im((3k+2)(1+ω)). Im(X3k+2)=4k(3k+1)3+(3k+2)23. Equating Im(X3k+2)=15523: 2k(3k+1)+(3k+2)=155⟹k(3k+1)+2(3k+2)=310 3k2+k+6k+4=310⟹3k2+7k−306=0. Solving for k: k=6−7±72−4(3)(−306)=6−7±49+3672=6−7±3721=6−7±61. Since k must be a positive integer, k=6−7+61=9. If k=9, then n=3k+2=3(9)+2=29. For n=29, X29=X3(9)+(3(9)+1)+(3(9)+2)(−ω2). X27=29(6(9)+(3(9)+1)ω)=29(54+28ω)=243+126ω. X29=(243+126ω)+28−29ω2=271+126ω−29(−1−ω)=271+126ω+29+29ω=300+155ω. Z=X29−155ω=(300+155ω)−155ω=300. Since Z=300≥0, n=29 is a valid solution.
All three values n=29,30,31 satisfy the given condition. Since the question is presented as a single-choice question, and all three are options, there might be an implicit constraint not stated, or the question is flawed for a single-choice format. However, if forced to select one, and assuming the smallest possible integer value for n is expected, then n=29.
The final answer is 29.