Solveeit Logo

Question

Question: If \(\omega\) is the cube root of unity, then \(\left| \begin{matrix} 1 & \omega & \omega^{2} \\ \om...

If ω\omega is the cube root of unity, then 1ωω2ωω21ω21ω\left| \begin{matrix} 1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega \end{matrix} \right|=

A

1

B

0

C

ω\omega

D

ω2\omega^{2}

Answer

0

Explanation

Solution

1ωω2ωω21ω21ω=1+ω+ω2ωω21+ω+ω2ω211+ω+ω21ω\left| \begin{matrix} 1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega \end{matrix} \right| = \left| \begin{matrix} 1 + \omega + \omega^{2} & \omega & \omega^{2} \\ 1 + \omega + \omega^{2} & \omega^{2} & 1 \\ 1 + \omega + \omega^{2} & 1 & \omega \end{matrix} \right|

=0ωω20ω2101ω=0= \left| \begin{matrix} 0 & \omega & \omega^{2} \\ 0 & \omega^{2} & 1 \\ 0 & 1 & \omega \end{matrix} \right| = 0.