Solveeit Logo

Question

Question: If \(\omega \) is the cube root of the unity, then prove that \(1+\omega +{{\omega }^{2}}=0\)....

If ω\omega is the cube root of the unity, then prove that 1+ω+ω2=01+\omega +{{\omega }^{2}}=0.

Explanation

Solution

Hint: For solving this first we will find the value of cube roots of unity by solving the equation z3=1{{z}^{3}}=1 where zz is a complex number. After that, we will define ω\omega , ω2{{\omega }^{2}} and find their values. Then, we will add them and prove the result 1+ω+ω2=01+\omega +{{\omega }^{2}}=0 easily.

Complete step-by-step solution -
Given:
It is given that, ω\omega is the cube root of the unity and we have to prove that, 1+ω+ω2=01+\omega +{{\omega }^{2}}=0 .
Now, before we proceed we should know the result of “DE-MOIVERE’S Theorem”.
DE-MOIVERE’S THEOREM:
Statement: If nZn\in Z (the set of integers), then (cosθ+isinθ)k=cos(kθ)+isin(kθ){{\left( \cos \theta +i\sin \theta \right)}^{k}}=\cos \left( k\theta \right)+i\sin \left( k\theta \right) .
Now, let zz be any complex number such that, z3=1{{z}^{3}}=1 .
Now, we can write 1=cos(00)+isin(00)1=\cos \left( {{0}^{0}} \right)+i\sin \left( {{0}^{0}} \right) in the equation z3=1{{z}^{3}}=1 . Then,
z3=1 z3=cos(00)+isin(00) z=(cos(00)+isin(00))13 \begin{aligned} & {{z}^{3}}=1 \\\ & \Rightarrow {{z}^{3}}=\cos \left( {{0}^{0}} \right)+i\sin \left( {{0}^{0}} \right) \\\ & \Rightarrow z={{\left( \cos \left( {{0}^{0}} \right)+i\sin \left( {{0}^{0}} \right) \right)}^{\dfrac{1}{3}}} \\\ \end{aligned}
Now, there should be three values of zz so, we write cos(00)+isin(00)=cos(2rπ)+isin(2rπ)\cos \left( {{0}^{0}} \right)+i\sin \left( {{0}^{0}} \right)=\cos \left( 2r\pi \right)+i\sin \left( 2r\pi \right) , where r=0,1,2r=0,1,2 in the above equation. Then,
z=(cos(00)+isin(00))13 z=(cos(2rπ)+isin(2rπ))13 \begin{aligned} & z={{\left( \cos \left( {{0}^{0}} \right)+i\sin \left( {{0}^{0}} \right) \right)}^{\dfrac{1}{3}}} \\\ & \Rightarrow z={{\left( \cos \left( 2r\pi \right)+i\sin \left( 2r\pi \right) \right)}^{\dfrac{1}{3}}} \\\ \end{aligned}
Now, apply “DE-MOIVERE’S Theorem” in the above equation. Then,
z=(cos(2rπ)+isin(2rπ))13 z=cos(2rπ3)+isin(2rπ3) \begin{aligned} & z={{\left( \cos \left( 2r\pi \right)+i\sin \left( 2r\pi \right) \right)}^{\dfrac{1}{3}}} \\\ & \Rightarrow z=\cos \left( \dfrac{2r\pi }{3} \right)+i\sin \left( \dfrac{2r\pi }{3} \right) \\\ \end{aligned}
Now, as we know that eiθ=cosθ+isinθ{{e}^{i\theta }}=\cos \theta +i\sin \theta . Then,
z=cos(2rπ3)+isin(2rπ3) z=ei2rπ3 \begin{aligned} & z=\cos \left( \dfrac{2r\pi }{3} \right)+i\sin \left( \dfrac{2r\pi }{3} \right) \\\ & \Rightarrow z={{e}^{i\dfrac{2r\pi }{3}}} \\\ \end{aligned}
Now, for r=0r=0 the value of z=1z=1 , for r=2r=2 the value of z=ei2π3z={{e}^{i\dfrac{2\pi }{3}}} and for r=2r=2 the value of z=ei4π3z={{e}^{i\dfrac{4\pi }{3}}} . Moreover, we define ω=ei2π3\omega ={{e}^{i\dfrac{2\pi }{3}}} and ω2=ei4π3{{\omega }^{2}}={{e}^{i\dfrac{4\pi }{3}}} as two non-real cube roots of unity.
Now, we will find the value of ω=ei2π3\omega ={{e}^{i\dfrac{2\pi }{3}}} and ω2=ei4π3{{\omega }^{2}} = {{e}^{i\dfrac{4\pi }{3}}} with the help of the formula eiθ=cosθ+isinθ{{e}^{i\theta }}=\cos \theta +i\sin \theta . Then,
ω=ei2π3 ω=cos(2π3)+isin(2π3) ω=cos(ππ3)+isin(ππ3) ω=cosπ3+isinπ3 ω=12+i32 ω2=ei4π3 ω2=cos(4π3)+isin(4π3) ω2=cos(π+π3)+isin(π+π3) ω2=cosπ3isinπ3 ω2=12i32 \begin{aligned} & \omega ={{e}^{i\dfrac{2\pi }{3}}} \\\ & \Rightarrow \omega =\cos \left( \dfrac{2\pi }{3} \right)+i\sin \left( \dfrac{2\pi }{3} \right) \\\ & \Rightarrow \omega =\cos \left( \pi -\dfrac{\pi }{3} \right)+i\sin \left( \pi -\dfrac{\pi }{3} \right) \\\ & \Rightarrow \omega =-\cos \dfrac{\pi }{3}+i\sin \dfrac{\pi }{3} \\\ & \Rightarrow \omega =-\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \\\ & {{\omega }^{2}}={{e}^{i\dfrac{4\pi }{3}}} \\\ & \Rightarrow {{\omega }^{2}}=\cos \left( \dfrac{4\pi }{3} \right)+i\sin \left( \dfrac{4\pi }{3} \right) \\\ & \Rightarrow {{\omega }^{2}}=\cos \left( \pi +\dfrac{\pi }{3} \right)+i\sin \left( \pi +\dfrac{\pi }{3} \right) \\\ & \Rightarrow {{\omega }^{2}}=-\cos \dfrac{\pi }{3}-i\sin \dfrac{\pi }{3} \\\ & \Rightarrow {{\omega }^{2}}=-\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2} \\\ \end{aligned}
Now, from the above results, we got ω=12+i32\omega =-\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} and ω2=12i32{{\omega }^{2}}=-\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2} . Then,
ω+ω2=12+i3212i32 ω+ω2=1212+i(3232) ω+ω2=1+i(0) ω+ω2+1=0 \begin{aligned} & \omega +{{\omega }^{2}}=-\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2} \\\ & \Rightarrow \omega +{{\omega }^{2}}=-\dfrac{1}{2}-\dfrac{1}{2}+i\left( \dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{3}}{2} \right) \\\ & \Rightarrow \omega +{{\omega }^{2}}=-1+i\left( 0 \right) \\\ & \Rightarrow \omega +{{\omega }^{2}}+1=0 \\\ \end{aligned}
Now, from the above result, we conclude that 1+ω+ω2=01+\omega +{{\omega }^{2}}=0 .
Thus, if ω\omega is the cube root of the unity, then 1+ω+ω2=01+\omega +{{\omega }^{2}}=0 .
Hence, proved.

Note: Here, the student should first understand and then proceed in the right direction to prove the result perfectly. After that, we should apply every fundamental result and theorem precisely without any error. Moreover, we should know that cube roots of the unity form a G.P. with a common ratio ω\omega . And for objective problems, we should remember this result.