Solveeit Logo

Question

Mathematics Question on Series

If ω\omega is the complex cube root of unity, then the value of ω+ω(12+38+932+27128+)\omega+\omega\left(\frac{1}{2}+\frac{3}{8}+\frac{9}{32}+\frac{27}{128}+\ldots \ldots\right)

A

-1

B

1

C

#NAME?

D

i

Answer

-1

Explanation

Solution

Consider 12+38+932+27128+\frac{1}{2}+\frac{3}{8}+\frac{9}{32}+\frac{27}{128}+\ldots
which can be written as
3021+3123+3225+3327+...\frac{3^{0}}{2^{1}}+\frac{3^{1}}{2^{3}}+\frac{3^{2}}{2^{5}}+\frac{3^{3}}{2^{7}}+...
=12[1+322+3224+3326+...]=\frac{1}{2}\left[1+\frac{3}{2^{2}}+\frac{3^{2}}{2^{4}}+\frac{3^{3}}{2^{6}}+...\right]
Since [1+322+3224+3326+]\left[1+\frac{3}{2^{2}}+\frac{3^{2}}{2^{4}}+\frac{3^{3}}{2^{6}}+\ldots \ldots\right] is a GP therefore by sum of infinite GP, we have
=12[11322]=2=\frac{1}{2}\left[\frac{1}{1-\frac{3}{2^{2}}}\right]=2
Therefore, given expression is
ω+ω(12+38+932+27128+...)\omega+\omega\left(\frac{1}{2}+\frac{3}{8}+\frac{9}{32}+\frac{27}{128}+...\right)
=ω+ω2=1=\omega+\omega^{2}=-1
[1+ω+ω2=0]\left[\because 1+\omega+\omega^{2}=0\right]