Solveeit Logo

Question

Question: If $\omega$ is cube root of unity, then value of the determinant $\begin{vmatrix} 1 & 1 & 1 \\ 1 & \...

If ω\omega is cube root of unity, then value of the determinant 1111ω2ω1ωω2=\begin{vmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{vmatrix} =

A

-3

B

33i3\sqrt{3}i

C

3

D

33i-3\sqrt{3}i

Answer

33i3\sqrt{3}i

Explanation

Solution

The given determinant is: D=1111ω2ω1ωω2D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{vmatrix} where ω\omega is a cube root of unity.

We know the following properties of cube roots of unity:

  1. ω3=1\omega^3 = 1
  2. 1+ω+ω2=01 + \omega + \omega^2 = 0

We can evaluate the determinant using cofactor expansion along the first row: D=1ω2ωωω211ω1ω2+11ω21ωD = 1 \cdot \begin{vmatrix} \omega^2 & \omega \\ \omega & \omega^2 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & \omega \\ 1 & \omega^2 \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & \omega^2 \\ 1 & \omega \end{vmatrix} D=(ω2ω2ωω)(1ω21ω)+(1ω1ω2)D = (\omega^2 \cdot \omega^2 - \omega \cdot \omega) - (1 \cdot \omega^2 - 1 \cdot \omega) + (1 \cdot \omega - 1 \cdot \omega^2) D=(ω4ω2)(ω2ω)+(ωω2)D = (\omega^4 - \omega^2) - (\omega^2 - \omega) + (\omega - \omega^2) Since ω3=1\omega^3 = 1, we have ω4=ω3ω=1ω=ω\omega^4 = \omega^3 \cdot \omega = 1 \cdot \omega = \omega. Substitute ω4=ω\omega^4 = \omega into the expression: D=(ωω2)(ω2ω)+(ωω2)D = (\omega - \omega^2) - (\omega^2 - \omega) + (\omega - \omega^2) Now, combine the terms: D=ωω2ω2+ω+ωω2D = \omega - \omega^2 - \omega^2 + \omega + \omega - \omega^2 D=3ω3ω2D = 3\omega - 3\omega^2 D=3(ωω2)D = 3(\omega - \omega^2) To find the value of ωω2\omega - \omega^2, we use the standard values of ω\omega: ω=ei2π/3=cos(2π/3)+isin(2π/3)=12+i32\omega = e^{i2\pi/3} = \cos(2\pi/3) + i\sin(2\pi/3) = -\frac{1}{2} + i\frac{\sqrt{3}}{2} ω2=ei4π/3=cos(4π/3)+isin(4π/3)=12i32\omega^2 = e^{i4\pi/3} = \cos(4\pi/3) + i\sin(4\pi/3) = -\frac{1}{2} - i\frac{\sqrt{3}}{2}

Now, calculate ωω2\omega - \omega^2: ωω2=(12+i32)(12i32)\omega - \omega^2 = \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) - \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) ωω2=12+i32+12+i32\omega - \omega^2 = -\frac{1}{2} + i\frac{\sqrt{3}}{2} + \frac{1}{2} + i\frac{\sqrt{3}}{2} ωω2=2i32=i3\omega - \omega^2 = 2i\frac{\sqrt{3}}{2} = i\sqrt{3} Substitute this value back into the expression for DD: D=3(i3)=33iD = 3(i\sqrt{3}) = 3\sqrt{3}i

Therefore, the value of the determinant is 33i3\sqrt{3}i.