Solveeit Logo

Question

Question: If \('\omega '\) is cube root of unity and \(x+y+z=a\),\(x+\omega y+{{\omega }^{2}}z=b\) and \(x+{{\...

If ω'\omega ' is cube root of unity and x+y+z=ax+y+z=a,x+ωy+ω2z=bx+\omega y+{{\omega }^{2}}z=b and x+ω2y+ωz=cx+{{\omega }^{2}}y+\omega z=c then which of the following is correct
( a ) x=a+b+c3x=\dfrac{a+b+c}{3}
( b )y=a+bω2+cω3y=\dfrac{a+b{{\omega }^{2}}+c\omega }{3}
( c ) z=a+cω2+bω3z=\dfrac{a+c{{\omega }^{2}}+b\omega }{3}
( d ) All of the above

Explanation

Solution

Here we will use two cube root identities which are 1+ω+ω2=01+\omega +{{\omega }^{2}}=0 and ω3=1{{\omega }^{3}}=1to solve the equations. Basically, in this question we will substitute values of x, y and z to find the answer matching any of the correct options.

Complete step by step answer:
We know that 1+ω+ω2=01+\omega +{{\omega }^{2}}=0 and ω3=1{{\omega }^{3}}=1 , where ω'\omega ' is cube root of unity.
It is given that, x+y+z=a,x+y+z=a,…… ( i )
x+ωy+ω2z=bx+\omega y+{{\omega }^{2}}z=b , …….( ii )
x+ω2y+ωz=cx+{{\omega }^{2}}y+\omega z=c………. ( iii )
Adding, equation ( i ), ( ii ), ( iii )
x+y+z+x+ωy+ω2z+x+ω2y+ωz=a+b+cx+y+z+x+\omega y+{{\omega }^{2}}z+x+{{\omega }^{2}}y+\omega z=a+b+c
Taking common factors out together, we get
3x+y(1+ω+ω2)+z(1+ω+ω2)=a+b+c3x+y\left( 1+\omega +{{\omega }^{2}} \right)+z\left( 1+\omega +{{\omega }^{2}} \right)=a+b+c …… ( iv )
As, we mentioned in above statement that 1+ω+ω2=01+\omega +{{\omega }^{2}}=0,
So substituting value of 1+ω+ω2=01+\omega +{{\omega }^{2}}=0in equation ( iv ), we get
3x = a + b + c,
Putting 3 from numerator of left hand side to denominator of right hand side, we get
x=a+b+c3x=\dfrac{a+b+c}{3}
Now it is given that, x+y+z=a,x+y+z=a,
So, we can re – write x+y+z=a,x+y+z=a,as y+z=axy+z=a-x …… ( v )
Putting value of x in equation ( v )
y+z=a(a+b+c)3y+z=a-\dfrac{(a+b+c)}{3}
On solving, we get
y+z=2abc3y+z=\dfrac{2a-b-c}{3}
Shifting z from left hand side to right hand side, we get
y=2abc3zy=\dfrac{2a-b-c}{3}-z
On solving, we get
y=2abc3z3y=\dfrac{2a-b-c-3z}{3}
Putting values of x and y in equation ( i ), we get
a+b+c3+ω(2abc3z3)+ω2z=b\dfrac{a+b+c}{3}+\omega \left( \dfrac{2a-b-c-3z}{3} \right)+{{\omega }^{2}}z=b…… ( vi )
Taking L.C.M in equation ( vi ), we get
a+b+c+2aωbωcω3zω+3ω2z=3ba+b+c+2a\omega -b\omega -c\omega -3z\omega +3{{\omega }^{2}}z=3b
Taking 3b from right hand to left hand side, we get
a2b+c+2aωbωcω3zω+3ω2z=0a-2b+c+2a\omega -b\omega -c\omega -3z\omega +3{{\omega }^{2}}z=0
Moving 3zω+3w2z-3z\omega +3{{w}^{2}}z from left hand side to right hand side, we get
a2b+c+2aωbωcω=3zω3ω2za-2b+c+2a\omega -b\omega -c\omega =3z\omega -3{{\omega }^{2}}z
On simplifying we get,
a(1+ω)+aωb(1+ω)b+c(1ω)=3zω(1ω) aω2+aω+bω2b+c(1ω)=3zω(1ω) aω(1ω)b(1ω)(1+ω)+c(1ω)=3zω(1ω) aω+bω2+c=3zω \begin{aligned} & a(1+\omega )+a\omega -b(1+\omega )-b+c(1-\omega )=3z\omega \left( 1-\omega \right) \\\ & -a{{\omega }^{2}}+a\omega +b{{\omega }^{2}}-b+c(1-\omega )=3z\omega (1-\omega ) \\\ & a\omega (1-\omega )-b(1-\omega )(1+\omega )+c(1-\omega )=3z\omega (1-\omega ) \\\ & a\omega +b{{\omega }^{2}}+c=3z\omega \\\ \end{aligned}
Putting 3ω3\omega in denominator of left hand side, we get
aω+bω2+c3ω=z\dfrac{a\omega +b{{\omega }^{2}}+c}{3\omega }=z
Multiplying, numerator and denominator of right hand side by ω2{{\omega }^{2}}, we get
z=(aω+bω2+c)ω23ω3z=\dfrac{(a\omega +b{{\omega }^{2}}+c)\cdot {{\omega }^{2}}}{3{{\omega }^{3}}}
z=a+bω+cω23z=\dfrac{a+b\omega +c{{\omega }^{2}}}{3}……. ( vi )
Putting equation ( vi ) in equation y=2abc3z3y=\dfrac{2a-b-c-3z}{3}, we get
y=2abc3(a+bω+cω23)3y=\dfrac{2a-b-c-3\left( \dfrac{a+b\omega +c{{\omega }^{2}}}{3} \right)}{3}
y=2abcabωcω23y=\dfrac{2a-b-c-a-b\omega -c{{\omega }^{2}}}{3}
y=ab(1+ω)c(1+ω2)3y=\dfrac{a-b(1+\omega )-c(1+{{\omega }^{2}})}{3},
As (1+ω)=ω2-(1+\omega )={{\omega }^{2}} and (1+ω2)=ω-(1+{{\omega }^{2}})=\omega , so putting these values in y=ab(1+ω)c(1+ω2)3y=\dfrac{a-b(1+\omega )-c(1+{{\omega }^{2}})}{3}, we get
y=a+bω2+cω3y=\dfrac{a+b{{\omega }^{2}}+c\omega }{3}
Option ( a ) is not correct as ω'\omega ' is cube root of unity and can take values 1, 12+i32-\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} and 12i32-\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2}, so option ( a ) will be correct only if it is mentioned that cube root of unity takes only real value.

So, the correct answer is “Option B”.

Note: The two general identities 1+ω+ω2=01+\omega +{{\omega }^{2}}=0 and ω3=1{{\omega }^{3}}=1 should always be kept in mind while solving questions based on cube root unity. Also, we have to keep in mind while solving these questions, that we have to break down complex equations into simplest form so as to obtain a solution. Sign scheme should be placed properly else it may change the answer.