Solveeit Logo

Question

Question: If \[\omega \] is complex cube root of unity then find the value of the expression given below \[\...

If ω\omega is complex cube root of unity then find the value of the expression given below
(1+ω)(1+ω2  )(1+ω4  )(1+ω8  ).....(2n+1)\left( 1+\omega \right)\left( 1+{{\omega }^{2}}\; \right)\left( 1+{{\omega }^{4}}\; \right)\left( 1+{{\omega }^{8}}\; \right).....\left( 2n+1 \right) terms.
Choose the correct option:
(A). 1
(B). 2ω2\omega
(C). 2ω-2\omega
(D). ω2-{{\omega }^{2}}

Explanation

Solution

Hint: If we have the expression containing ω\omega (the complex cube root of unity), then it is first required to simplify it and use two properties: ω3=1{{\omega }^{3}}=1 and 1+ω  +ω2=01+\omega \;+{{\omega }^{2}}=0.

Complete step-by-step solution -
In the problem, we have to find the value of the expression
(1+ω)(1+ω2  )(1+ω4  )(1+ω8  ).....(2n+1)\left( 1+\omega \right)\left( 1+{{\omega }^{2}}\; \right)\left( 1+{{\omega }^{4}}\; \right)\left( 1+{{\omega }^{8}}\; \right).....\left( 2n+1 \right) terms.
Now, it is known that when ω\omega is given as the cube root of unity, then we have ω3=1{{\omega }^{3}}=1 and 1+ω  +ω2=01+\omega \;+{{\omega }^{2}}=0.
So, in the given expression there are (2n+1)\left( 2n+1 \right) terms, which is the odd number of terms.
As, (2n)\left( 2n \right)is even so (2n+1)\left( 2n+1 \right)is odd.
Now when we take first two terms we will have:

& \Rightarrow \left( 1+\omega \right)\left( 1+{{\omega }^{2}}\; \right) \\\ & \Rightarrow \left( -{{\omega }^{2}} \right)\left( -\;\omega \right)\,\,\,\,\,\,\,\,\,\, [\because \left( 1+\omega +{{\omega }^{2}}=0 \right) ] \\\ & \Rightarrow {{\omega }^{3}} \\\ & \Rightarrow 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, [\because {{\omega }^{3}}=1 ]\\\ \end{aligned}$$ So we can say that $$\left( 1+\omega \right)\left( 1+{{\omega }^{2}}\; \right)=1$$ So the value of the first two terms is 1. Next we will take next two terms, as follows: $$\begin{aligned} & \Rightarrow \left( 1+{{\omega }^{4}}\; \right)\left( 1+{{\omega }^{8}}\; \right) \\\ & \Rightarrow \left( 1+{{\omega }^{3+1}}\; \right)\left( 1+{{\omega }^{2\times 3+2}}\; \right) \\\ & \Rightarrow \left( 1+{{\omega }^{3}}\;\omega \right)\left( 1+{{\omega }^{2\times 3}}\;{{\omega }^{2}} \right) \\\ & \Rightarrow \left( 1+\;\omega \right)\left( 1+\;{{\omega }^{2}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, [\because {{\omega }^{3}}=1,{{\omega }^{6}}=1 ] \\\ \end{aligned}$$ So now these two terms are the same as the first two terms and thus the value is 1 again. $$\Rightarrow \left( 1+{{\omega }^{4}}\; \right)\left( 1+{{\omega }^{8}}\; \right)=1$$ Similarly, up to $$\left( 2n \right)$$ terms the value of the expression is 1 or we can say that: $$\begin{aligned} & \Rightarrow \left( 1+\omega \right)\left( 1+{{\omega }^{2}}\; \right)\left( 1+{{\omega }^{4}}\; \right)\left( 1+{{\omega }^{8}}\; \right).....2n\,\,\,\,\,terms \\\ & \Rightarrow \left( 1+\omega \right)\left( 1+{{\omega }^{2}}\; \right)\left( 1+\omega \right)\left( 1+{{\omega }^{2}}\; \right).....2n\,\,\,\,\,terms \\\ & \Rightarrow 1\times 1.............n\,\,\,\,\,terms\,\,\,\,\,\,\,\,\,\,\because \left( 1+\omega \right)\left( 1+{{\omega }^{2}}\; \right)=1 \\\ & \Rightarrow 1 \\\ \end{aligned}$$ Or we can say that $$\Rightarrow \left( 1+\omega \right)\left( 1+{{\omega }^{2}}\; \right)\left( 1+{{\omega }^{4}}\; \right)\left( 1+{{\omega }^{8}}\; \right).....2n\,\,\,\,\,terms\,\,\,=\,\,\,1$$ Now, the $${{\left( 2n+1 \right)}^{th}}$$ term is $$\left( 1+\omega \right)$$ So, the value of the given expression: $$\begin{aligned} & \Rightarrow \left( 1+\omega \right)\left( 1+{{\omega }^{2}}\; \right)\left( 1+{{\omega }^{4}}\; \right)\left( 1+{{\omega }^{8}}\; \right).....\left( 2n+1 \right)\,\,\,terms \\\ & \Rightarrow 1\times \left( 1+\omega \right)\,\,\,\,\,\,\,\, [\because \left( 1+\omega \right)\left( 1+{{\omega }^{2}}\; \right)\left( 1+{{\omega }^{4}}\; \right)\left( 1+{{\omega }^{8}}\; \right).....2n\,\,\,\,\,terms\,\,\,=\,\,\,1 ]\\\ & \Rightarrow \left( 1+\omega \right) \\\ & \Rightarrow -{{\omega }^{2}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, [\because 1+\omega +{{\omega }^{2}}=0 ]\\\ \end{aligned}$$ Finally, we can say that option 4) $$-{{\omega }^{2}}$$ is the correct answer. Note: It is important to know that $$\omega $$ is a complex cube root of unity. So we can’t use $$\omega $$ for any other root of unity other than cube root of unity. To find the cube root of unity, we need to solve the equation $${{x}^{3}}=1$$. Here we need to find both the real and complex roots.