Solveeit Logo

Question

Question: If \[\omega \] is complex cube root of unity than the value of \[\dfrac{{a + b\omega + c{\omega ^2}}...

If ω\omega is complex cube root of unity than the value of a+bω+cω2c+aω+bω2+a+bω+cω2b+cω+aω2\dfrac{{a + b\omega + c{\omega ^2}}}{{c + a\omega + b{\omega ^2}}} + \dfrac{{a + b\omega + c{\omega ^2}}}{{b + c\omega + a{\omega ^2}}}
A. 00
B. 1 - 1
C. 11
D. 22

Explanation

Solution

As we know that the complex of unity is ω\omega , so some other values are 1+ω+ω2=01 + \omega + {\omega ^2} = 0 and ω3=1{\omega ^3} = 1 . So using all these values and we first, multiply the first term with omega {\text{omega }} to both numerator and denominator and then on further simplification we get our answer.

Complete step by step answer:

Considering the given equation, a+bω+cω2c+aω+bω2+a+bω+cω2b+cω+aω2\dfrac{{a + b\omega + c{\omega ^2}}}{{c + a\omega + b{\omega ^2}}} + \dfrac{{a + b\omega + c{\omega ^2}}}{{b + c\omega + a{\omega ^2}}}
Let first multiply and divide the first term with omega {\text{omega }} , we get,

=(a+bω+cω2)ω(c+aω+bω2)ω+a+bω+cω2b+cω+aω2 =aω+bω2+cω3cω+aω2+bω3+a+bω+cω2b+cω+aω2  = \dfrac{{(a + b\omega + c{\omega ^2})\omega }}{{(c + a\omega + b{\omega ^2})\omega }} + \dfrac{{a + b\omega + c{\omega ^2}}}{{b + c\omega + a{\omega ^2}}} \\\ = \dfrac{{a\omega + b{\omega ^2} + c{\omega ^3}}}{{c\omega + a{\omega ^2} + b{\omega ^3}}} + \dfrac{{a + b\omega + c{\omega ^2}}}{{b + c\omega + a{\omega ^2}}} \\\

Now as ω3=1{\omega ^3} = 1 , we get,
=aω+bω2+c(cω+aω2+b)+a+bω+cω2b+cω+aω2= \dfrac{{a\omega + b{\omega ^2} + c}}{{(c\omega + a{\omega ^2} + b)}} + \dfrac{{a + b\omega + c{\omega ^2}}}{{b + c\omega + a{\omega ^2}}}
As denominator are same we can add them directly and so, we get,
=a(1+ω)+b(ω+ω2)+c(1+ω2)(b+cω+aω2)= \dfrac{{a(1 + \omega ) + b(\omega + {\omega ^2}) + c(1 + {\omega ^2})}}{{(b + c\omega + a{\omega ^2})}}
Now, using 1+ω+ω2=01 + \omega + {\omega ^2} = 0 so simplify various terms of numerator, we get,
=a(ω2)+b(1)+c(ω)(b+cω+aω2)= \dfrac{{a( - {\omega ^2}) + b( - 1) + c( - \omega )}}{{(b + c\omega + a{\omega ^2})}}
Taking minus common we get,

=(b+cω+aω2)(b+cω+aω2) =1  = \dfrac{{ - (b + c\omega + a{\omega ^2})}}{{(b + c\omega + a{\omega ^2})}} \\\ = - 1 \\\

Hence, option (B) is our correct answer.

Note: The cube roots of unity can be defined as the numbers which when raised to the power of 3 will give the result as 1. A complex number is a number that can be expressed in the form a + bia{\text{ }} + {\text{ }}bi , where a and b are real numbers, and i represents the imaginary unit, satisfying the equation i2=1{i^2} = - 1. Because no real number satisfies this equation, i is called an imaginary number.