Question
Question: If \(\omega\) is an imaginary root of unity, then the value of \(\left| \begin{matrix} a & b\omega^{...
If ω is an imaginary root of unity, then the value of abωcω2bω2caωaωbω2c is.
A
a3+b3+c3−3abc
B
a2b−b2c
C
0
D
a2+b2+c2
Answer
0
Explanation
Solution
We have abωcω2bω2caωaωbω2c
= a(1+ω)b(ω+ω2)c(ω2+1)bω2caωaωbω2c , {C1→C1+C3}
$\left| \begin{matrix}
- a\omega^{2} & b\omega^{2} & a\omega \
- b & c & b\omega^{2} \
- c\omega & a\omega & c \end{matrix} \right| = \omega^{2}\omega\left| \begin{matrix}
- a & b & a\omega^{2} \
- b & c & b\omega^{2} \
- c & a & c\omega^{2} \end{matrix} \right|$
= $\omega^{2}\left| \begin{matrix}
- a & b & a \
- b & c & b \
- c & a & c \end{matrix} \right|=- \omega^{2}\left| \begin{matrix} a & b & a \ b & c & b \ c & a & c \end{matrix} \right| = 0$.