Question
Question: If $\omega$ is an imaginary cube root of unity, then the value of $\begin{bmatrix} 1 & \omega^2 & 1-...
If ω is an imaginary cube root of unity, then the value of 1ω1ω21ω1−ω41+ω5ω2 is

-4
ω2−4
ω2
4
ω2−4
Solution
Let A=1ω1ω21ω1−ω41+ω5ω2, where ω is an imaginary cube root of unity.
We use the properties of cube roots of unity: ω3=1 and 1+ω+ω2=0. Using ω3=1, we have ω4=ω3⋅ω=1⋅ω=ω and ω5=ω3⋅ω2=1⋅ω2=ω2. Substitute these into the matrix: A=1ω1ω21ω1−ω1+ω2ω2
Using 1+ω+ω2=0, we have 1+ω2=−ω. So the matrix becomes: A=1ω1ω21ω1−ω−ωω2
Now we calculate the determinant of this matrix. Let D=det(A). D=1⋅det[1ω−ωω2]−ω2⋅det[ω1−ωω2]+(1−ω)⋅det[ω11ω]
Calculate the 2x2 determinants: det[1ω−ωω2]=(1)(ω2)−(−ω)(ω)=ω2+ω Since 1+ω+ω2=0, we have ω2+ω=−1.
det[ω1−ωω2]=(ω)(ω2)−(−ω)(1)=ω3+ω Since ω3=1, this becomes 1+ω. Since 1+ω+ω2=0, we have 1+ω=−ω2.
det[ω11ω]=(ω)(ω)−(1)(1)=ω2−1.
Substitute these values back into the expression for D: D=1⋅(−1)−ω2⋅(−ω2)+(1−ω)⋅(ω2−1) D=−1+ω4+(1−ω)(ω2−1) Using ω4=ω: D=−1+ω+(1−ω)(ω2−1)
Expand the last term: (1−ω)(ω2−1)=1⋅ω2−1⋅1−ω⋅ω2+ω⋅1 =ω2−1−ω3+ω Using ω3=1: =ω2−1−1+ω=ω2+ω−2 Using ω2+ω=−1: =−1−2=−3.
Substitute this back into the expression for D: D=−1+ω+(−3) D=ω−4
Applying 1+ω+ω2=0, ω=−1−ω2 D=−1−ω2−4=−5−ω2 D=−5−ω2=−5−(−1−ω)=−5+1+ω=−4+ω D=ω−4=−1−ω2−4=−5−ω2 D=−5−ω2 ω2−4=−1−ω−4=−5−ω Since 1+ω+ω2=0, ω2=−1−ω Therefore, ω2−4=−1−ω−4=−5−ω
Thus, the value of the determinant is ω2−4.