Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If ω\omega is an imaginary cube root of unity, then the value of (2ω)(2ω2)+2(3ω)(3ω2)+.....+(n1)(nω)(nω2)\left(2-\omega\right)\left(2-\omega^{2}\right)+2\left(3-\omega\right)\left(3-\omega^{2}\right)+.....+\left(n-1\right)\left(n-\omega\right)\left(n-\omega^{2}\right)

A

n24(n+1)2n\frac{n^{2}}{4}\left(n+1\right)^{2}-n

B

n24(n+1)2+n\frac{n^{2}}{4}\left(n+1\right)^{2}+n

C

n24(n+1)2\frac{n^{2}}{4}\left(n+1\right)^{2}

D

n24(n+1)n\frac{n^{2}}{4}\left(n+1\right)-n

Answer

n24(n+1)2n\frac{n^{2}}{4}\left(n+1\right)^{2}-n

Explanation

Solution

r=2n(r1)(rω2)=r=2n(r31)=\displaystyle \sum_{r=2}^n\left(r-1\right)\left(r-\omega^{2}\right)=\displaystyle \sum_{r=2}^n(r^3-1)= [n2(n+1)241](n1)=n2(n+1)24n\left[\frac{n^{2}\left(n+1\right)^{2}}{4}-1\right]-\left(n-1\right)=\frac{n^{2}\left(n+1\right)^{2}}{4}-n