Solveeit Logo

Question

Mathematics Question on Determinants

If ω\omega is an imaginary cube root of unity, then the value of the determinant 1+ωω2ω 1+ω2ωω2 ω+ω2ωω2\begin{vmatrix}1+\omega&\omega^{2}&-\omega\\\ 1+\omega^{2}&\omega&-\omega^{2}\\\ \omega+\omega^2&\omega&-\omega^{2}\end{vmatrix}

A

2ω-2\omega

B

3ω2-3\omega^2

C

1-1

D

00

Answer

3ω2-3\omega^2

Explanation

Solution

1+ωω2ω 1+ω2ωω2 ω+ω2ωω2\begin{vmatrix}1+\omega&\omega^{2}&-\omega\\\ 1+\omega^{2}&\omega&-\omega^{2}\\\ \omega+\omega^{2}&\omega& \omega^{2}\end{vmatrix}
=0ω2ω 0ωω2 1+ωωω2=\begin{vmatrix}0&\omega^{2}&-\omega\\\ 0&\omega&-\omega^{2}\\\ -1+\omega&\omega&-\omega^{2}\end{vmatrix}
[C1C1+C2]\left[\because C_{1} \rightarrow C_{1}+C_{2}\right]
=(1+ω)(ω4+ω2)=(ω1)(ω2ω)=(-1+\omega)\left(-\omega^{4}+\omega^{2}\right)=(\omega-1)\left(\omega^{2}-\omega\right)
=ω3ω2ω2+ω=3ω2=\omega^{3}-\omega^{2}-\omega^{2}+\omega=-3 \omega^{2}