Solveeit Logo

Question

Question: If \(\omega \) is an imaginary cube root of unity. Then the equation whose roots are \(2\omega + 3{\...

If ω\omega is an imaginary cube root of unity. Then the equation whose roots are 2ω+3ω22\omega + 3{\omega ^2} and 2ω2+3ω2{\omega ^2} + 3\omega is

Explanation

Solution

Using the formula, the sum of roots =MiddletermFirstterm = - \dfrac{{Middle\,term}}{{First\,term}} =ba = - \dfrac{b}{a} , find b in terms of a.
Now, after that, use, the product of roots =LasttermFirstterm = \dfrac{{Last\,term}}{{First\,term}} =ca = \dfrac{c}{a} , find c in the terms of a.
Now, using the two relations b and c, form an equation using ax2+bx+c=0a{x^2} + bx + c = 0 .

Complete step-by-step answer:
The given roots of the equation, which is to be formed, are 2ω+3ω22\omega + 3{\omega ^2} and 2ω2+3ω2{\omega ^2} + 3\omega .
Now, in a linear quadratic equation, the sum of roots =MiddletermFirstterm = - \dfrac{{Middle\,term}}{{First\,term}} =ba = - \dfrac{b}{a} .
ba=(2ω+3ω2)+(2ω2+3ω)\therefore - \dfrac{b}{a} = \left( {2\omega + 3{\omega ^2}} \right) + \left( {2{\omega ^2} + 3\omega } \right)
ba=3ω2+3ω+2ω2+2ω ba=3(ω2+ω)+2(ω2+ω)  \therefore - \dfrac{b}{a} = 3{\omega ^2} + 3\omega + 2{\omega ^2} + 2\omega \\\ \therefore - \dfrac{b}{a} = 3\left( {{\omega ^2} + \omega } \right) + 2\left( {{\omega ^2} + \omega } \right) \\\
But, ω2+ω=1{\omega ^2} + \omega = - 1
ba=3(1)+2(1) ba=1(3+2) ba=5  \therefore - \dfrac{b}{a} = 3\left( { - 1} \right) + 2\left( { - 1} \right) \\\ \therefore - \dfrac{b}{a} = - 1\left( {3 + 2} \right) \\\ \therefore \dfrac{b}{a} = 5 \\\
b=5a\therefore b = 5a … (1)
Similarly, in a linear quadratic equation, the product of roots =LasttermFirstterm = \dfrac{{Last\,term}}{{First\,term}} =ca = \dfrac{c}{a} .
ca=(2ω+3ω2)(3ω+2ω2) ca=ω(2+3ω)×ω(3+2ω) ca=ω2(2+3ω)(3+2ω) ca=ω2(6ω2+4ω+9ω+6) ca=ω2(6ω2+13ω+6) ca=6ω4+13ω3+6ω2 ca=6ω4+6ω2+13ω3 ca=6ω2(ω2+1)+13ω3  \therefore \dfrac{c}{a} = \left( {2\omega + 3{\omega ^2}} \right)\left( {3\omega + 2{\omega ^2}} \right) \\\ \therefore \dfrac{c}{a} = \omega \left( {2 + 3\omega } \right) \times \omega \left( {3 + 2\omega } \right) \\\ \therefore \dfrac{c}{a} = {\omega ^2}\left( {2 + 3\omega } \right)\left( {3 + 2\omega } \right) \\\ \therefore \dfrac{c}{a} = {\omega ^2}\left( {6{\omega ^2} + 4\omega + 9\omega + 6} \right) \\\ \therefore \dfrac{c}{a} = {\omega ^2}\left( {6{\omega ^2} + 13\omega + 6} \right) \\\ \therefore \dfrac{c}{a} = 6{\omega ^4} + 13{\omega ^3} + 6{\omega ^2} \\\ \therefore \dfrac{c}{a} = 6{\omega ^4} + 6{\omega ^2} + 13{\omega ^3} \\\ \therefore \dfrac{c}{a} = 6{\omega ^2}\left( {{\omega ^2} + 1} \right) + 13{\omega ^3} \\\
But, ω2+1=ω{\omega ^2} + 1 = - \omega
ca=6ω2(ω)+13ω3 ca=13ω36ω3  \therefore \dfrac{c}{a} = 6{\omega ^2}\left( { - \omega } \right) + 13{\omega ^3} \\\ \therefore \dfrac{c}{a} = 13{\omega ^3} - 6{\omega ^3} \\\
Also, ω3=1{\omega ^3} = 1
ca=136 ca=7  \therefore \dfrac{c}{a} = 13 - 6 \\\ \therefore \dfrac{c}{a} = 7 \\\
c=7a\therefore c = 7a … (2)
Now, the quadratic equation can be formed as ax2+bx+c=0a{x^2} + bx + c = 0 .
Substituting, b=5ab = 5a and c=7ac = 7a in the above equation.
ax2+5ax+7a=0 a(x2+5x+7)=0 x2+5x+7=0  \therefore a{x^2} + 5ax + 7a = 0 \\\ \therefore a\left( {{x^2} + 5x + 7} \right) = 0 \\\ \therefore {x^2} + 5x + 7 = 0 \\\
Thus, the quadratic equation is x2+5x+7=0{x^2} + 5x + 7 = 0 .

Note: There are 3 cube roots of unity, which are 1, 1+3i2\dfrac{{ - 1 + \sqrt 3 i}}{2} and 13i2\dfrac{{ - 1 - \sqrt 3 i}}{2} .
We also write 1+3i2\dfrac{{ - 1 + \sqrt 3 i}}{2} as ω\omega and 13i2\dfrac{{ - 1 - \sqrt 3 i}}{2} as ω2{\omega ^2} .
The properties of cube roots of unity are as follows:
1. 1+ω+ω2=01 + \omega + {\omega ^2} = 0
2. ω3=1{\omega ^3} = 1
3. ω3n=1,ω3n+1=ω,ω3n+2=ω2{\omega ^{3n}} = 1,{\omega ^{3n + 1}} = \omega ,{\omega ^{3n + 2}} = {\omega ^2}
4. ω=ω2,(ω)2=ω\overline \omega = {\omega ^2},{\left( {\overline \omega } \right)^2} = \omega .