Solveeit Logo

Question

Question: If \(\omega \) is an imaginary cube root of unity, then the value of \(2\left( {1 + \omega } \right)...

If ω\omega is an imaginary cube root of unity, then the value of 2(1+ω)(1+ω2)+3(2+ω)(2+ω2)+......+101(100+ω)(100+ω2)2\left( {1 + \omega } \right)\left( {1 + {\omega ^2}} \right) + 3\left( {2 + \omega } \right)\left( {2 + {\omega ^2}} \right) + ...... + 101\left( {100 + \omega } \right)\left( {100 + {\omega ^2}} \right) is-

Explanation

Solution

If ω\omega is the cube root of unity then 1+ω+ω2=01 + \omega + {\omega ^2} = 0 and ω3=1{\omega ^3} = 1. Take the first term of the series and solve it using these identities then repeat the same process with the second term and last term. Substitute the values of all the terms in 2(1+ω)(1+ω2)+3(2+ω)(2+ω2)+......+101(100+ω)(100+ω2)2\left( {1 + \omega } \right)\left( {1 + {\omega ^2}} \right) + 3\left( {2 + \omega } \right)\left( {2 + {\omega ^2}} \right) + ...... + 101\left( {100 + \omega } \right)\left( {100 + {\omega ^2}} \right).You will see a common pattern emerging so you write it in summation form. Solve the summation to get the answer.

Complete step-by-step answer:
If ω\omega is the cube root of unity then it satisfies two properties-
ω3=1{\omega ^3} = 1 and 1+ω+ω2=01 + \omega + {\omega ^2} = 0
Now we have to find the value of 2(1+ω)(1+ω2)+3(2+ω)(2+ω2)+......+101(100+ω)(100+ω2)2\left( {1 + \omega } \right)\left( {1 + {\omega ^2}} \right) + 3\left( {2 + \omega } \right)\left( {2 + {\omega ^2}} \right) + ...... + 101\left( {100 + \omega } \right)\left( {100 + {\omega ^2}} \right)-- (i)
Let us first take first term of the series-2(1+ω)(1+ω2)2\left( {1 + \omega } \right)\left( {1 + {\omega ^2}} \right)
On solving this we get,
2(1+ω)(1+ω2)=2(1+ω2+ω+ω3)\Rightarrow 2\left( {1 + \omega } \right)\left( {1 + {\omega ^2}} \right) = 2\left( {1 + {\omega ^2} + \omega + {\omega ^3}} \right)
On rearranging we get-
2(1+ω)(1+ω2)=2(1+ω3+ω2+ω)\Rightarrow 2\left( {1 + \omega } \right)\left( {1 + {\omega ^2}} \right) = 2\left( {1 + {\omega ^3} + {\omega ^2} + \omega } \right)
Now we know that 1+ω+ω2=0ω+ω2=11 + \omega + {\omega ^2} = 0 \Rightarrow \omega + {\omega ^2} = - 1
On using this value in above equation we get,
2(1+ω)(1+ω2)=2(1+ω31)\Rightarrow 2\left( {1 + \omega } \right)\left( {1 + {\omega ^2}} \right) = 2\left( {1 + {\omega ^3} - 1} \right)
And we can write 2=(1+1)2 = \left( {1 + 1} \right) then the equation becomes,
2(1+ω)(1+ω2)=(1+1)(1+ω31)\Rightarrow 2\left( {1 + \omega } \right)\left( {1 + {\omega ^2}} \right) = \left( {1 + 1} \right)\left( {1 + {\omega ^3} - 1} \right) --- (ii)
On taking second term of the series,
3(2+ω)(2+ω2)=3(22+ω3+2ω2+2ω)\Rightarrow 3\left( {2 + \omega } \right)\left( {2 + {\omega ^2}} \right) = 3\left( {{2^2} + {\omega ^3} + 2{\omega ^2} + 2\omega } \right)
On taking 22 common we get,
3(2+ω)(2+ω2)=3(22+ω3+2(ω2+ω))\Rightarrow 3\left( {2 + \omega } \right)\left( {2 + {\omega ^2}} \right) = 3\left( {{2^2} + {\omega ^3} + 2\left( {{\omega ^2} + \omega } \right)} \right)
Again we know that 1+ω+ω2=0ω+ω2=11 + \omega + {\omega ^2} = 0 \Rightarrow \omega + {\omega ^2} = - 1
On using this in the formula we get,
3(2+ω)(2+ω2)=3(22+ω3+2(1))\Rightarrow 3\left( {2 + \omega } \right)\left( {2 + {\omega ^2}} \right) = 3\left( {{2^2} + {\omega ^3} + 2\left( { - 1} \right)} \right)
On simplifying we get,
3(2+ω)(2+ω2)=3(22+ω32)\Rightarrow 3\left( {2 + \omega } \right)\left( {2 + {\omega ^2}} \right) = 3\left( {{2^2} + {\omega ^3} - 2} \right)
Now we can write 3=(2+1)3 = \left( {2 + 1} \right)
On putting this value in above equation we get,
3(2+ω)(2+ω2)=(2+1)(22+ω32)\Rightarrow 3\left( {2 + \omega } \right)\left( {2 + {\omega ^2}} \right) = \left( {2 + 1} \right)\left( {{2^2} + {\omega ^3} - 2} \right) --- (iii)
Similarly on taking last term of the series and solving it in same method we get,
101(100+ω)(100+ω2)=(100+1)(1002+ω3100)\Rightarrow 101\left( {100 + \omega } \right)\left( {100 + {\omega ^2}} \right) = \left( {100 + 1} \right)\left( {{{100}^2} + {\omega ^3} - 100} \right) -- (iv)
On putting values of eq. (ii), (iii) and (iv) in eq. (i), we get-
(1+1)(12+ω31)+(2+1)(22+ω32)+......+(100+1)(1002+ω3100)\Rightarrow \left( {1 + 1} \right)\left( {{1^2} + {\omega ^3} - 1} \right) + \left( {2 + 1} \right)\left( {{2^2} + {\omega ^3} - 2} \right) + ...... + \left( {100 + 1} \right)\left( {{{100}^2} + {\omega ^3} - 100} \right)
On observing this series, we see that this series is in the form of
\Rightarrow i=1n(n+1)(n2+ω3n)\sum\limits_{i = 1}^n {\left( {n + 1} \right)} \left( {{n^2} + {\omega ^3} - n} \right)
Where n=100100
So we can write the series as-
i=1100(n+1)(n2+ω3n)\Rightarrow \sum\limits_{i = 1}^{100} {\left( {n + 1} \right)} \left( {{n^2} + {\omega ^3} - n} \right)
Now we know that ω3=1{\omega ^3} = 1
So on putting this value we get,
i=1100(n+1)(n2+1n)\Rightarrow \sum\limits_{i = 1}^{100} {\left( {n + 1} \right)} \left( {{n^2} + 1 - n} \right)
On solving multiplying (n+1)\left( {n + 1} \right) inside the bracket, we get
i=1100(n(n2+1n)+1(n2+1n))\Rightarrow \sum\limits_{i = 1}^{100} {\left( {n\left( {{n^2} + 1 - n} \right) + 1\left( {{n^2} + 1 - n} \right)} \right)}
On multiplication we get,
i=1100(n3+nn2+n2+1n)\Rightarrow \sum\limits_{i = 1}^{100} {\left( {{n^3} + n - {n^2} + {n^2} + 1 - n} \right)}
On cancelling common terms with opposite sign we get,
i=1100(n3+1)\Rightarrow \sum\limits_{i = 1}^{100} {\left( {{n^3} + 1} \right)}
i=1100n3+i=11001\Rightarrow \sum\limits_{i = 1}^{100} {{n^3}} + \sum\limits_{i = 1}^{100} 1
Now we know that i=1nm3=[n(n+1)2]2\sum\limits_{i = 1}^n {{m^3}} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2} where m is a natural number
And i=1n1=n\Rightarrow \sum\limits_{i = 1}^n {1 = n}
On applying the values in the formula we get,
(100(100+1)2)2+100\Rightarrow {\left( {\dfrac{{100\left( {100 + 1} \right)}}{2}} \right)^2} + 100
On solving we get,
(100×1012)2+100\Rightarrow {\left( {\dfrac{{100 \times 101}}{2}} \right)^2} + 100
(50×101)2+100\Rightarrow {\left( {50 \times 101} \right)^2} + 100
On multiplication we get,
(5050)2+100\Rightarrow {\left( {5050} \right)^2} + 100
On squaring the given number we get,
25502500+100\Rightarrow 25502500 + 100
On adding we get,
25502600\Rightarrow 25502600
Hence the correct answer is 2550260025502600.

Note: Here we can also use the formula for the series in the form -
i=1n(n+1)(n2+1n)\Rightarrow \sum\limits_{i = 1}^n {\left( {n + 1} \right)} \left( {{n^2} + 1 - n} \right)
The formula for the sum of such form of series is-
Sn=n24(n+1)2+n\Rightarrow {S_n} = \dfrac{{{n^2}}}{4}{\left( {n + 1} \right)^2} + n
So on putting n=100100 we get,
Sn=10024(100+1)2+100\Rightarrow {S_n} = \dfrac{{{{100}^2}}}{4}{\left( {100 + 1} \right)^2} + 100
Sn=100004×1012+100\Rightarrow {S_n} = \dfrac{{10000}}{4} \times {101^2} + 100
Sn=(2500×10201)+100\Rightarrow {S_n} = \left( {2500 \times 10201} \right) + 100
Sn=25502600\Rightarrow {S_n} = 25502600
Hence we get the answer.