Solveeit Logo

Question

Question: If \(\omega \) is an imaginary cube root of unity, then \({{\left( 1+\omega -{{\omega }^{2}} \right)...

If ω\omega is an imaginary cube root of unity, then (1+ωω2)7{{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}} equals
(a) 128ω128\omega
(b) 128ω-128\omega
(c) 128ω2128{{\omega }^{2}}
(d) 128ω2-128{{\omega }^{2}}

Explanation

Solution

Hint: The sum of 1,ω1,\omega and ω2{{\omega }^{2}} is equal to 0 where 1,ω1,\omega and ω2{{\omega }^{2}} are the cube roots of unity . Also, ω3=1{{\omega }^{3}}=1.

Before proceeding with the question, we must know some properties which are related to the cube roots of unity i.e. 1,ω,ω21,\omega ,{{\omega }^{2}} which will be used to solve this question. These properties are,
1+ω+ω2=0..........(1)1+\omega +{{\omega }^{2}}=0..........\left( 1 \right)
ω3n=1..........(2){{\omega }^{3n}}=1..........\left( 2 \right), where nn is an integer.
In this question, we have to find the value of (1+ωω2)7{{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}. From equation (1)\left( 1 \right), we have,
1+ω+ω2=01+\omega +{{\omega }^{2}}=0
Hence, we can also write 1+ω=ω2.............(4)1+\omega =-{{\omega }^{2}}.............\left( 4 \right)
Substituting 1+ω=ω21+\omega =-{{\omega }^{2}} from equation (4)\left( 4 \right) in equation (2)\left( 2 \right), we get,

& {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}={{\left( -{{\omega }^{2}}-{{\omega }^{2}} \right)}^{7}} \\\ & \Rightarrow {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}={{\left( -2{{\omega }^{2}} \right)}^{7}} \\\ & \Rightarrow {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}={{\left( -2 \right)}^{7}}{{\left( {{\omega }^{2}} \right)}^{7}} \\\ & \Rightarrow {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}=-128{{\omega }^{14}} \\\ & \Rightarrow {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}=-128{{\omega }^{12+2}} \\\ & \Rightarrow {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}=-128{{\omega }^{12}}{{\omega }^{2}} \\\ & \Rightarrow {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}=-128{{\omega }^{3\left( 4 \right)}}{{\omega }^{2}}...............\left( 5 \right) \\\ \end{aligned}$$ From equation $\left( 2 \right)$, we have ${{\omega }^{3n}}=1$ where $n$ is an integer. Since $4$ is an integer, we can substitute $n=4$ in equation $\left( 2 \right)$. So, substituting $n=4$ in equation $\left( 2 \right)$, we get, ${{\omega }^{3(4)}}=1.......\left( 6 \right)$ From $\left( 6 \right)$, we have ${{\omega }^{3(4)}}=1$. Substituting ${{\omega }^{3(4)}}=1$ from equation $\left( 6 \right)$ in equation $\left( 5 \right)$, we get, $$\begin{aligned} & {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}=-128\left( 1 \right){{\omega }^{2}} \\\ & \Rightarrow {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}=-128{{\omega }^{2}} \\\ \end{aligned}$$ So,the answer is option (d) Note: In this question, it was easier to think of writing ${{\omega }^{14}}$ as ${{\omega }^{12+2}}$ where $12$ is a multiple of $3$ because $14$ is a comparatively smaller number and it is easier to express $14$ in the form of a multiple of $3$. But if we get a larger number, it is difficult to convert that number directly in the form of the multiple of $3$. So, in that case, we will divide that number by long division method to find the divisor, quotient and remainder. Then we express that number in the form of the multiple of $3$ using the formula, $number=\left( divisor \right)\times \left( quotient \right)+remainder$, where the $divisor=3$. For example if we have a number $149$ in the power of $\omega $, dividing $149$ by $3$ using a long division method, we will get $divisor=3,quotient=49,remainder=2$. Hence, we can express $149$ as $149=\left( 3 \right)\left( 49 \right)+2$. Therefore, we expressed $149$ in the form of multiple of $3$.