Solveeit Logo

Question

Question: If \[\omega\] is an imaginary cube root of unity, then \[{{\text{(1+}\omega -{{\omega }^{2}}\text{)}...

If ω\omega is an imaginary cube root of unity, then (1+ωω2)7{{\text{(1+}\omega -{{\omega }^{2}}\text{)}}^{7}} equals-

Explanation

Solution

Hint: We have the expression, (1+ωω2)7{{\text{(1+}\omega -{{\omega }^{2}}\text{)}}^{7}} . We need to find the value of this expression. First make the expression in terms of ω2{{\omega }^{2}} . We know the property, 1+ω+ω2=0\text{1+}\omega +{{\omega }^{2}}=0. Using this property, put the value of 1+ω=ω2\text{1+}\omega =-{{\omega }^{2}} and solve it further.

Complete step by step answer:
We know that,
1+ω+ω2=0\text{1+}\omega +{{\omega }^{2}}=0
1+ω=ω2\Rightarrow \text{1+}\omega =-{{\omega }^{2}} ……..eq(i)
Putting eq(i) in (1+ωω2)7{{\text{(1+}\omega -{{\omega }^{2}}\text{)}}^{7}}
we get,
(1+ωω2)7=(ω2ω2)7{{\text{(1+}\omega -{{\omega }^{2}}\text{)}}^{7}}\text{=(}-{{\omega }^{2}}-{{\omega }^{2}}{{\text{)}}^{7}}
=(2ω2)7=128ω2.7=128ω14={{(-2{{\omega }^{2}})}^{7}}=-128{{\omega }^{2.7}}=-128{{\omega }^{14}} ………eq(ii)
We know that, ω3n+2=ω2{{\omega }^{3n+2}}={{\omega }^{2}}
and ω3n=1{{\omega }^{3n}}=1
Thus we get,
ω14=ω3.4×ω2=1×ω2=ω2{{\omega }^{14}}={{\omega }^{3.4}}\times {{\omega }^{2}}=1\times {{\omega }^{2}}={{\omega }^{2}} …….eq(iii)
Putting eq.(iii) in eq.(ii),we get
-128×ω14=128×ω2=128ω2\text{-128}\times {{\omega }^{14}}=-128\times {{\omega }^{2}}=-128{{\omega }^{2}}

Hence, (1+ωω2)7=128ω2{{\text{(1+}\omega -{{\omega }^{2}}\text{)}}^{7}}=-128{{\omega }^{2}} .

Note: In this type of question, one can think to expand the given expression directly after putting the values of ω\omega and ω2{{\omega }^{2}} . And then it will become complex to solve further and a lot of time can get wasted. To overcome this situation, first, try to make the expression in a single cube root of unity using its property and then expand. After expansion, using the properties of cube roots we can easily solve this question and conclude the answer.