Solveeit Logo

Question

Question: If \(\omega \) is a non-real imaginary cube root of unity, then find \(\arg (i\omega ) + \arg (i{\om...

If ω\omega is a non-real imaginary cube root of unity, then find arg(iω)+arg(iω2)\arg (i\omega ) + \arg (i{\omega ^2})

Explanation

Solution

At first we will find the value of ω\omega and ω2{\omega ^2} using the equation x3=1{x^3} = 1.
Now, using these values as we substitute the values in the given expression we will simplify for the argument, and simplifying we will get the answer remembering the point that arguement(π,π]arguement \in ( - \pi ,\pi ] .

Complete step-by-step answer:
Given data: arg(iω)+arg(iω2)\arg (i\omega ) + \arg (i{\omega ^2}) and ω\omega is a non-real imaginary cube root of unity
It is given that ω\omega is a non-real imaginary cube root of unity i.e. it is a solution of the equation
x3=1{x^3} = 1
Subtracting 1 from both the sides, we get,
x31=0\Rightarrow {x^3} - 1 = 0
Using the formula a3b3=(ab)(a2+b2+ab){a^3} - {b^3} = (a - b)({a^2} + {b^2} + ab) , we get,
(x1)(x2+1+x)=0\Rightarrow \left( {x - 1} \right)\left( {{x^2} + 1 + x} \right) = 0
It is given that ω\omega is the non-real root so x1x \ne 1
(x2+1+x)=0\Rightarrow \left( {{x^2} + 1 + x} \right) = 0
We know that solution of the quadratic equation ax2+bx+c=0a{x^2} + bx + c = 0 , is given by x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}
Therefore, x=1±124(1)(1)2x = \dfrac{{ - 1 \pm \sqrt {{1^2} - 4\left( 1 \right)\left( 1 \right)} }}{2}
On simplification we get,
x=12±32\Rightarrow x = \dfrac{{ - 1}}{2} \pm \dfrac{{\sqrt { - 3} }}{2}
It is well known that 1=i\sqrt { - 1} = i
The two values for x will be 12+i32\dfrac{{ - 1}}{2} + i\dfrac{{\sqrt 3 }}{2} and 12i32\dfrac{{ - 1}}{2} - i\dfrac{{\sqrt 3 }}{2}
Let us say that, ω=12+i32\omega = \dfrac{{ - 1}}{2} + i\dfrac{{\sqrt 3 }}{2} and ω2=12i32{\omega ^2} = \dfrac{{ - 1}}{2} - i\dfrac{{\sqrt 3 }}{2}
Substituting the value of ω\omega and ω2{\omega ^2} in arg(iω)+arg(iω2)\arg (i\omega ) + \arg (i{\omega ^2}) , we get,
=arg[i(12+i32)]+arg[i(12i32)]= \arg \left[ {i\left( {\dfrac{{ - 1}}{2} + i\dfrac{{\sqrt 3 }}{2}} \right)} \right] + \arg \left[ {i\left( {\dfrac{{ - 1}}{2} - i\dfrac{{\sqrt 3 }}{2}} \right)} \right]
Simplifying the brackets, we get,
=arg(12i+i232)+arg(12ii232)= \arg \left( {\dfrac{{ - 1}}{2}i + {i^2}\dfrac{{\sqrt 3 }}{2}} \right) + \arg \left( {\dfrac{{ - 1}}{2}i - {i^2}\dfrac{{\sqrt 3 }}{2}} \right)
Using i2=1{i^2} = - 1, we get,
=arg(32i12)+arg(32i12)= \arg \left( { - \dfrac{{\sqrt 3 }}{2} - i\dfrac{1}{2}} \right) + \arg \left( {\dfrac{{\sqrt 3 }}{2} - i\dfrac{1}{2}} \right)
We know that if arg(a+ib)=θ\arg \left( {a + ib} \right) = \theta then tanθ=ba\tan \theta = \dfrac{b}{a} and π<arg(z)π- \pi < \arg (z) \leqslant \pi
=arg(32i12)+arg(32i12)= \arg \left( { - \dfrac{{\sqrt 3 }}{2} - i\dfrac{1}{2}} \right) + \arg \left( {\dfrac{{\sqrt 3 }}{2} - i\dfrac{1}{2}} \right)
As we know that ω\omega lie in the third quadrant and ω2{\omega ^2} lie in the second quadrant
=5π6π6= - \dfrac{{5\pi }}{6} - \dfrac{\pi }{6}
=π= - \pi, but we mentioned that arguement(π,π]arguement \in ( - \pi ,\pi ]
As point having argument π- \pi will lie on –y-axis
The principle argument will be π\pi
Therefore the required answer is π\pi .

Note: We can also do this question with an alternative method
We know that arg(a)+arg(b)=arg(ab)\arg (a) + \arg (b) = \arg (ab) , using this in the simplification of the given expression
arg(iω)+arg(iω2)=arg(iωiω2)\Rightarrow \arg (i\omega ) + \arg (i{\omega ^2}) = \arg (i\omega i{\omega ^2})
On simplifying the bracket terms
=arg(i2ω3)= \arg ({i^2}{\omega ^3})
Now we know that i2=1{i^2} = - 1 and ω3=1{\omega ^3} = 1 as ω\omega is a cube root of unity
=arg(1)= \arg ( - 1)
Now we know that (-1) lie on the –y-axis whose argument is given by π- \pi .