Solveeit Logo

Question

Question: If \[\omega \] is a non real cube root of unity and n is a positive integer which is not a multiple ...

If ω\omega is a non real cube root of unity and n is a positive integer which is not a multiple of 3, then 1+ωn+ω2n1+{{\omega }^{n}}+{{\omega }^{2n}} is equal to:
A. 3ω3\omega
B. 0
C. 3
D. None of these

Explanation

Solution

Hint: Using b=3 in Euclid’s division lemma, take possible cases for n=3k+rn=3k+r and for each case solve the given expression using properties of exponents. After solving you will get 1+ωn+ω2n=1+ω+ω21+{{\omega }^{n}}+{{\omega }^{2n}}=1+\omega +{{\omega }^{2}} .Use the formula for sum of the roots in the equation x31=0{{x}^{3}}-1=0 to get the value of 1+ω+ω21+\omega +{{\omega }^{2}}.

Complete step-by-step answer:
Given:
ω\omega ’ is a non real cube root of unity.
i.e. ω3=1{{\omega }^{3}}=1 ……………………(1)
And we have to find the value of 1+ωn+ω2n1+{{\omega }^{n}}+{{\omega }^{2n}} . is also given that ‘n’ is not a multiple of 3. By Euclid’s division lemma, we can write that a=bk+r;0r<ba=bk+r; 0\le {r}<{b} . for any positive integer ‘b’ .
Let us take b=3.
So, a=3k+r;0r<3a=3k+r;0\le{r}<3 .
Three possible cases:-
Case (1): a=3k+0a=3k+0
Case (2): a=3k+1a=3k+1
Case (3): a=3k+2a=3k+2 .
In case 1st{{1}^{st}} ‘a’ is a multiple of 3 but here, it is given that ‘n’ is not a multiple of 3. For ‘n’, there are two possible cases.
Case (1): n=3k+1n=3k+1 and
Case (2): n=3k+2n=3k+2 .
Let us first solve the given expression for case (1) i.e. n=3k+1n=3k+1
1+ωn+ω2n=1+ω(3k+1)+ω2(3k+1) 1+ωn+ω2n=1+ω(3k+1)+ω(6k+2) \begin{aligned} & 1+{{\omega }^{n}}+{{\omega }^{2n}}=1+{{\omega }^{\left( 3k+1 \right)}}+{{\omega }^{2\left( 3k+1 \right)}} \\\ & \Rightarrow 1+{{\omega }^{n}}+{{\omega }^{2n}}=1+{{\omega }^{\left( 3k+1 \right)}}+{{\omega }^{\left( 6k+2 \right)}} \\\ \end{aligned}
We know for any integers ab+c=ab×ac{{a}^{b+c}}={{a}^{b}}\times {{a}^{c}} .
So, we will get
1+ωn+ω2n=1+ω3k.ω1+ω6k.ω2\Rightarrow 1+{{\omega }^{n}}+{{\omega }^{2n}}=1+{{\omega }^{3k}}.{{\omega }^{1}}+{{\omega }^{6k}}.{{\omega }^{2}}
We know for any integers abc=(ab)c{{a}^{bc}}={{\left( {{a}^{b}} \right)}^{c}} .
So, we will get
1+ωn+ω2n=1+(ω3)k.ω1+(ω3)2k.ω2\Rightarrow 1+{{\omega }^{n}}+{{\omega }^{2n}}=1+{{\left( {{\omega }^{3}} \right)}^{k}}.{{\omega }^{1}}+{{\left( {{\omega }^{3}} \right)}^{2k}}.{{\omega }^{2}}
From eq (1) , ω3=1{{\omega }^{3}}=1 .
On putting ω3=1{{\omega }^{3}}=1, we will get,
1+ωn+ω2n=1+(1)k.ω+(1)2k.ω2\Rightarrow 1+{{\omega }^{n}}+{{\omega }^{2n}}=1+{{\left( 1 \right)}^{k}}.\omega +{{\left( 1 \right)}^{2k}}.{{\omega }^{2}} .
We know for any integer a, 1a=1{{1}^{a}}=1 .
So, we will get,
1+ωn+ω2n=1+ω+ω2\Rightarrow 1+{{\omega }^{n}}+{{\omega }^{2n}}=1+\omega +{{\omega }^{2}} .
Now, let us similarly solve the given expression for case (2) i.e. b=3k+2b=3k+2 .
1+ωn+ω2n=1+ω(3k+2)+ω2(3k+2)1+{{\omega }^{n}}+{{\omega }^{2n}}=1+{{\omega }^{\left( 3k+2 \right)}}+{{\omega }^{2\left( 3k+2 \right)}} .
Using the properties that we have used in solving for case (1), we get
1+ωn+ω2n=1+ω3k.ω2+ω(6k+4)\Rightarrow 1+{{\omega }^{n}}+{{\omega }^{2n}}=1+{{\omega }^{3}}^{k}.{{\omega }^{2}}+{{\omega }^{\left( 6k+4 \right)}} .
We can write 6k+4=6k+3+16k+4=6k+3+1 .
So, we will get

& \Rightarrow 1+{{\omega }^{n}}+{{\omega }^{2n}}=1+{{\left( {{\omega }^{3}} \right)}^{k}}.{{\omega }^{2}}+{{\omega }^{\left( 6k+3+1 \right)}} \\\ & \Rightarrow 1+{{\omega }^{n}}+{{\omega }^{2n}}=1+{{\left( {{\omega }^{3}} \right)}^{k}}.{{\omega }^{2}}+{{\omega }^{1}}.{{\omega }^{3+6k}} \\\ & \Rightarrow 1+{{\omega }^{n}}+{{\omega }^{2n}}=1+{{\left( {{\omega }^{3}} \right)}^{k}}.{{\omega }^{2}}+{{\omega }^{1}}.{{\left( {{\omega }^{3}} \right)}^{\left( 1+2k \right)}} \\\ \end{aligned}$$ From eq (1) $${{\omega }^{3}}=1$$ . On putting $${{\omega }^{3}}=1$$, we will get, $\begin{aligned} & \Rightarrow 1+{{\omega }^{n}}+{{\omega }^{2n}}=1+{{\left( 1 \right)}^{k}}.{{\omega }^{2}}+{{\omega }^{1}}.{{\left( 1 \right)}^{1+2k}} \\\ & \Rightarrow 1+{{\omega }^{n}}+{{\omega }^{2n}}=1+{{\omega }^{2}}+\omega \\\ & \Rightarrow 1+{{\omega }^{n}}+{{\omega }^{2n}}=1+\omega +{{\omega }^{2}} \\\ \end{aligned}$ In both the cases, we have obtained that $\Rightarrow 1+{{\omega }^{n}}+{{\omega }^{2n}}=1+\omega +{{\omega }^{2}}$…………………………. (2) We know that $1,\omega ,{{\omega }^{2}}$ are the three roots of the equation ${{x}^{3}}+1$ . i.e. ${{x}^{3}}-1=0$ . For a cubic equation $a{{x}^{3}}+b{{x}^{2}}+cx+d=0$ . We know that sum of roots $$=\dfrac{\text{-}\left( \text{coefficient of }{{\text{x}}^{2}} \right)}{\text{coefficient of }{{\text{x}}^{3}}}$$ . Thus, $1+\omega +{{\omega }^{2}}=\dfrac{\text{-}\left( \text{coefficient of }{{\text{x}}^{2}} \right)}{\text{coefficient of }{{\text{x}}^{3}}}$ Here in equation ${{x}^{3}}-1=0$ , coefficient of ${{x}^{2}}=0$ and coefficient of ${{x}^{3}}=1$ . So, $1+\omega +{{\omega }^{2}}=\dfrac{\text{-}\left( 0 \right)}{1}$ . $\Rightarrow 1+\omega +{{\omega }^{2}}=0$ ………………. (3) So, $1+{{\omega }^{n}}+{{\omega }^{2n}}=0$ [from eq (2) and (3)]. Hence the required value of $1+{{\omega }^{n}}+{{\omega }^{2n}}=0$ and option (B) is the correct answer. Note: (i) According to Euclid's Division Lemma if we have two positive integers a and b, then there exist unique integers q and r which satisfies the condition $a = bq + r$ where $0\le {r}< {b}$. ... By exactly we mean that on dividing both the integers a and b the remainder is zero (ii) Shortcut method: If ‘$$\omega $$’ is a non real root of unity then, $1+{{\omega }^{n}}+{{\omega }^{2n}}=0$ if ‘n’ is not a multiple of 3. $1+{{\omega }^{n}}+{{\omega }^{2n}}=3$ if ‘n’ is a multiple of 3. In the solution, we have proved that if ‘n’ is not a multiple of 3, $1+{{\omega }^{n}}+{{\omega }^{2n}}=0$. Now let us prove if ‘b’ is a multiple of 3, $1+{{\omega }^{n}}+{{\omega }^{2n}}=3$ . Since ‘b’ is a multiple of 3, $n=3k$ . Putting $n=3k$ , we will get, $1+{{\omega }^{n}}+{{\omega }^{2n}}=1+{{\omega }^{3k}}+{{\omega }^{2\left( 3k \right)}}$ $\begin{aligned} & =1+{{\omega }^{3k}}+{{\omega }^{6k}} \\\ & =1+{{\left( {{\omega }^{3}} \right)}^{k}}+{{\left( {{\omega }^{3}} \right)}^{2k}} \\\ \end{aligned}$ One putting ${{\omega }^{3}}=1$ , we will get, $\begin{aligned} & 1+{{\omega }^{n}}+{{\omega }^{2n}}=1+{{1}^{k}}+{{\left( 1 \right)}^{2k}} \\\ & \Rightarrow 1+{{\omega }^{n}}+{{\omega }^{2n}}=1+1+1 \\\ \end{aligned}$ $\Rightarrow 1+{{\omega }^{n}}+{{\omega }^{2n}}=3$.