Solveeit Logo

Question

Mathematics Question on Determinants

If ω\omega is a cube root of unity, then the value of determinant 1+ωω2ω ω2+ωωω2 1+ω2ωω2\begin{vmatrix}1+\omega&\omega^{2}&\omega \\\ \omega^{2} + \omega &-\omega &\omega^{2} \\\ 1+\omega^{2} &\omega &\omega^{2} \end{vmatrix}

A

1+ω1 + \omega

B

ω1 \omega - 1

C

0

D

ω2\omega^2

Answer

ω1 \omega - 1

Explanation

Solution

Applying C1C1+C2C_1 \to C_1 +C_2
1+ω+ω2ω2ω ω2ωω2 1+ω+ω2ωω2=0ω2ω ω2ωω2 0ωω2\begin{vmatrix}1+\omega+\omega^{2} &\omega^{2}&\omega \\\ \omega^{2} &-\omega &\omega^{2} \\\ 1+\omega + \omega^{2} &\omega &\omega^{2} \end{vmatrix} = \begin{vmatrix}0&\omega^{2}&\omega \\\ \omega^{2} &-\omega &\omega^{2} \\\ 0&\omega &\omega^{2} \end{vmatrix}
          [ 1+ω+ω2=0]\ \ \ \ \ \ \ \ \ \ [ \because \ 1+ \omega + \omega^2 = 0]
Expanding along C1C_1? we get ω2(ω4ω2) - \omega^2 (\omega^4 -\omega^2)
=ω6+ω4=ω1           [  ω3=1]= - \omega^6 +\omega^4 = \omega - 1\ \ \ \ \ \ \ \ \ \ \ [\because \ \ \omega^3 = 1]