Solveeit Logo

Question

Question: If \(\omega \) is a cube root of unity, then the value of \({{\left( 1+\omega +{{\omega }^{2}} \righ...

If ω\omega is a cube root of unity, then the value of (1+ω+ω2)5+(1+ωω2)5{{\left( 1+\omega +{{\omega }^{2}} \right)}^{5}}+{{\left( 1+\omega -{{\omega }^{2}} \right)}^{5}} is
[a] 16ω16\omega
[b] 32ω32\omega
[c] 48ω48\omega
[d] 32ω-32\omega

Explanation

Solution

Hint: Use the fact that ω\omega is a complex cube root of unity if and only if ω\omega satisfies the quadratic equation 1+x+x2=01+x+{{x}^{2}}=0. Also since ω\omega is a cube root of unity, we have ω3=1{{\omega }^{3}}=1. Simplify and solve the expression using these two properties.

Complete step-by-step solution -

We have ω\omega is a cube root of unity, then ω\omega is a root of the cubic x3=1{{x}^{3}}=1
Hence we have x31=0{{x}^{3}}-1=0
Using a3b3=(ab)(a2+ab+b2){{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right), hence we have
x31=(x1)(x2+x+1){{x}^{3}}-1=\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)
Since ω\omega is not purely real, we have ω1\omega \ne 1
Hence ω\omega satisfies x2+x+1=0{{x}^{2}}+x+1=0
Hence we have 1+ω+ω2=01+\omega +{{\omega }^{2}}=0.
Hence 1+ω=ω21+\omega =-{{\omega }^{2}}
Hence we have (1+ωω2)5=(2ω2)5=32ω10=32(ω3)3ω=32ω{{\left( 1+\omega -{{\omega }^{2}} \right)}^{5}}={{\left( -2{{\omega }^{2}} \right)}^{5}}=-32{{\omega }^{10}}=-32{{\left( {{\omega }^{3}} \right)}^{3}}\omega =-32\omega
Hence we have (1+ω+ω2)5+(1+ωω2)5=032ω=32ω{{\left( 1+\omega +{{\omega }^{2}} \right)}^{5}}+{{\left( 1+\omega -{{\omega }^{2}} \right)}^{5}}=0-32\omega =-32\omega
Hence option [d] is correct.

Note: If α\alpha is an nth root of unity, then we have 1+α+α2++αn1=01+\alpha +{{\alpha }^{2}}+\cdots +{{\alpha }^{n-1}}=0, if α\alpha is not purely real.
Proof: Since α\alpha is an nth root of unity, we have αn=1{{\alpha }^{n}}=1.
Now since α\alpha is not purely real α10\alpha -1\ne 0.
Observe that 1,α.α2,,αn11,\alpha .{{\alpha }^{2}},\cdots ,{{\alpha }^{n-1}} for a geometric progression with a = 1 and r=αr=\alpha .
We know that in a geometric progression Sn=a(rn1)r1{{S}_{n}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}
Using the above result, we have
Sn=1(αn1)α1{{S}_{n}}=\dfrac{1\left( {{\alpha }^{n}}-1 \right)}{\alpha -1}
Since αn=1{{\alpha }^{n}}=1, we have
Sn=(11)α1=0{{S}_{n}}=\dfrac{\left( 1-1 \right)}{\alpha -1}=0
Hence, we have 1+α+α2++αn1=01+\alpha +{{\alpha }^{2}}+\cdots +{{\alpha }^{n-1}}=0
Hence proved.
[2] Put n = 3 in the above formula and α=ω\alpha =\omega , we get
1+ω+ω2=01+\omega +{{\omega }^{2}}=0, which is the same as obtained above.