Question
Question: If $\omega$ is a cube root of unity and $\omega \neq 1$, then $\left|2\cos\left(\sum_{k=1}^{10}(k-\o...
If ω is a cube root of unity and ω=1, then 2cos(∑k=110(k−ω)(k−ω2)1350π) is equal to
A
0
B
1
C
2
D
3
Answer
1
Explanation
Solution
Given ω is a cube root of unity with ω=1, we have:
ω+ω2=−1andωω2=1.Thus,
(k−ω)(k−ω2)=k2−k(ω+ω2)+ωω2=k2+k+1.Summing from k=1 to 10:
k=1∑10(k2+k+1)=k=1∑10k2+k=1∑10k+10=385+55+10=450.The angle becomes:
450⋅1350π=3π.So,
2cos(3π)=2(21)=1.Taking the absolute value, we get ∣1∣=1.