Solveeit Logo

Question

Question: If $\omega$ is a cube root of unity and $\omega \neq 1$, then $\left|2\cos\left(\sum_{k=1}^{10}(k-\o...

If ω\omega is a cube root of unity and ω1\omega \neq 1, then 2cos(k=110(kω)(kω2)π1350)\left|2\cos\left(\sum_{k=1}^{10}(k-\omega)(k-\omega^2)\frac{\pi}{1350}\right)\right| is equal to

A

0

B

1

C

2

D

3

Answer

1

Explanation

Solution

Given ω\omega is a cube root of unity with ω1\omega \neq 1, we have:

ω+ω2=1andωω2=1.\omega + \omega^2 = -1 \quad \text{and} \quad \omega\omega^2 = 1.

Thus,

(kω)(kω2)=k2k(ω+ω2)+ωω2=k2+k+1.(k-\omega)(k-\omega^2)= k^2 - k(\omega+\omega^2) + \omega\omega^2 = k^2+k+1.

Summing from k=1k=1 to 1010:

k=110(k2+k+1)=k=110k2+k=110k+10=385+55+10=450.\sum_{k=1}^{10}(k^2+k+1)=\sum_{k=1}^{10}k^2+\sum_{k=1}^{10}k+10 = 385+55+10 = 450.

The angle becomes:

450π1350=π3.450\cdot\frac{\pi}{1350}=\frac{\pi}{3}.

So,

2cos(π3)=2(12)=1.2\cos\left(\frac{\pi}{3}\right)=2\left(\frac{1}{2}\right)=1.

Taking the absolute value, we get 1=1\left| 1 \right|=1.