Solveeit Logo

Question

Question: If \[\omega \] is a cube root of unity and \[n\] is a positive integer satisfying \[1 + {\omega ^n} ...

If ω\omega is a cube root of unity and nn is a positive integer satisfying 1+ωn+ω2n=01 + {\omega ^n} + {\omega ^{2n}} = 0 then, nn is of the type:
A.3m3m
B.3m+13m + 1
C.3m+23m + 2
D.None of these

Explanation

Solution

Here, we will substitute each option in the given equation and try to prove that the left hand side is equal to the right hand side. The option which will satisfy this criterion will be the required answer.

Formula Used:
We will use the following formulas:
1.(am)n=am×n{\left( {{a^m}} \right)^n} = {a^{m \times n}}
2.1+ω+ω2=01 + \omega + {\omega ^2} = 0
3. am+n=aman{a^{m + n}} = {a^m} \cdot {a^n}

Complete step-by-step answer:
According to the question, ω\omega is a cube root of unity.
Hence, this means that,
ω3=1\sqrt[3]{\omega } = 1
Cubing both sides, we get
ω3=1\Rightarrow {\omega ^3} = 1…………………….(1)\left( 1 \right)
Now, nn is a positive integer satisfying 1+ωn+ω2n=01 + {\omega ^n} + {\omega ^{2n}} = 0.
We have to find that nn is of the type of which of the given options.
Now, we will solve this question, by substituting every option in the place of nn
3m3m
Now, substituting n=3mn = 3m in the equation 1+ωn+ω2n=01 + {\omega ^n} + {\omega ^{2n}} = 0, we get
1+ω3m+ω2(3m)=01 + {\omega ^{3m}} + {\omega ^{2\left( {3m} \right)}} = 0
Now, let m=1m = 1
1+ω3+ω6=0\Rightarrow 1 + {\omega ^3} + {\omega ^6} = 0
This can also be written as:
Using the property (am)n=am×n{\left( {{a^m}} \right)^n} = {a^{m \times n}}, we get
1+ω3+(ω3)2=0\Rightarrow 1 + {\omega ^3} + {\left( {{\omega ^3}} \right)^2} = 0
Hence, substituting ω3=1{\omega ^3} = 1 from (1)\left( 1 \right), we get,
1+1+(1)2=30\Rightarrow 1 + 1 + {\left( 1 \right)^2} = 3 \ne 0
Since, LHS \ne RHS
Hence, option A is rejected.
3m+13m + 1
Now, substituting n=3m+1n = 3m + 1 in the equation 1+ωn+ω2n=01 + {\omega ^n} + {\omega ^{2n}} = 0, we get
1+ω3m+1+ω2(3m+1)=01 + {\omega ^{3m + 1}} + {\omega ^{2\left( {3m + 1} \right)}} = 0
1+ω3mω+ω6m+2=0\Rightarrow 1 + {\omega ^{3m}} \cdot \omega + {\omega ^{6m + 2}} = 0
Using the property am+n=aman{a^{m + n}} = {a^m} \cdot {a^n} , we get
1+ω3mω+ω6mω2=0\Rightarrow 1 + {\omega ^{3m}} \cdot \omega + {\omega ^{6m}} \cdot {\omega ^2} = 0
Now, let m=1m = 1
1+ω3ω+ω6ω2=0\Rightarrow 1 + {\omega ^3} \cdot \omega + {\omega ^6} \cdot {\omega ^2} = 0
This can also be written as:
1+ω3ω+(ω3)2ω2=0\Rightarrow 1 + {\omega ^3} \cdot \omega + {\left( {{\omega ^3}} \right)^2} \cdot {\omega ^2} = 0
Hence, substituting ω3=1{\omega ^3} = 1 from (1)\left( 1 \right), we get,
1+(1)ω+(1)2ω2=0\Rightarrow 1 + \left( 1 \right) \cdot \omega + {\left( 1 \right)^2} \cdot {\omega ^2} = 0
1+ω+ω2=0\Rightarrow 1 + \omega + {\omega ^2} = 0
Hence, LHS == RHS
We know that 1+ω+ω2=01 + \omega + {\omega ^2} = 0 because the sum of three cube roots of unity is 0.
Hence, option B is the correct answer.
But, we will check this for option C as well:
3m+23m + 2
Now, substituting n=3m+2n = 3m + 2 in the equation 1+ωn+ω2n=01 + {\omega ^n} + {\omega ^{2n}} = 0, we get
1+ω3m+2+ω2(3m+2)=01 + {\omega ^{3m + 2}} + {\omega ^{2\left( {3m + 2} \right)}} = 0
1+ω3mω2+ω6m+4=0\Rightarrow 1 + {\omega ^{3m}} \cdot {\omega ^2} + {\omega ^{6m + 4}} = 0
Using the property (am)n=am×n{\left( {{a^m}} \right)^n} = {a^{m \times n}}, we get
am+n=aman{a^{m + n}} = {a^m} \cdot {a^n})
1+ω3mω2+ω6mω4=0\Rightarrow 1 + {\omega ^{3m}} \cdot {\omega ^2} + {\omega ^{6m}} \cdot {\omega ^4} = 0
Now, let m=1m = 1
1+ω3ω2+ω6ω4=0\Rightarrow 1 + {\omega ^3} \cdot {\omega ^2} + {\omega ^6} \cdot {\omega ^4} = 0
This can also be written as:
1+ω3ω2+(ω3)2ω4=0\Rightarrow 1 + {\omega ^3} \cdot {\omega ^2} + {\left( {{\omega ^3}} \right)^2} \cdot {\omega ^4} = 0
Hence, substituting ω3=1{\omega ^3} = 1 from (1)\left( 1 \right), we get,
1+(1)ω2+(1)2ω4=0\Rightarrow 1 + \left( 1 \right) \cdot {\omega ^2} + {\left( 1 \right)^2} \cdot {\omega ^4} = 0
1+ω2+ω40\Rightarrow 1 + {\omega ^2} + {\omega ^4} \ne 0
Hence, LHS \ne RHS
Also, this part completely depends on the value of mm
Hence, option C is also rejected.
Therefore, if ω\omega is a cube root of unity and nn is a positive integer satisfying 1+ωn+ω2n=01 + {\omega ^n} + {\omega ^{2n}} = 0 then, nn is of the type 3m+13m + 1
Hence, option B is the required answer.

Note: Let us assume the cube root of unity or 1 as:
13=z\sqrt[3]{1} = z
Cubing both sides,
1=z3\Rightarrow 1 = {z^3}
Or
z31=0\Rightarrow {z^3} - 1 = 0
Now, using the formula (a3b3)=(ab)(a2+b2+ab)\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right), we get
(z1)(z2+z+1)=0\Rightarrow \left( {z - 1} \right)\left( {{z^2} + z + 1} \right) = 0
Therefore, either (z1)=0\left( {z - 1} \right) = 0
z=1\Rightarrow z = 1
Or, (z2+z+1)=0\left( {{z^2} + z + 1} \right) = 0
Comparing with (ax2+bx+c)=0\left( {a{x^2} + bx + c} \right) = 0
Here, a=1a = 1, b=1b = 1 and c=1c = 1
Now, we know that the formula of determinant, D=b24acD = {b^2} - 4ac.
Hence, for (z2+z+1)=0\left( {{z^2} + z + 1} \right) = 0,
D=(1)24×1=14=3D = {\left( 1 \right)^2} - 4 \times 1 = 1 - 4 = - 3
Now, Using quadratic formula,
z=b±D2az = \dfrac{{ - b \pm \sqrt D }}{{2a}}
Here, a=1a = 1, b=1b = 1, c=1c = 1 and D=3D = - 3
z=1±32\Rightarrow z = \dfrac{{ - 1 \pm \sqrt { - 3} }}{2}
This can be written as:
z=1±3i2\Rightarrow z = \dfrac{{ - 1 \pm \sqrt 3 i}}{2}
Therefore, the three cube roots of unity are:
11, 12+3i2\dfrac{{ - 1}}{2} + \dfrac{{\sqrt 3 i}}{2} and 123i2\dfrac{{ - 1}}{2} - \dfrac{{\sqrt 3 i}}{2}
Now, according to the property, the sum of these three cube roots of unity will be equal to 0.
We know that,
1+ω+ω2=01 + \omega + {\omega ^2} = 0
Here, ω\omega represents the imaginary cube roots.
1+12+3i2+123i2=11+0=0\Rightarrow 1 + \dfrac{{ - 1}}{2} + \dfrac{{\sqrt 3 i}}{2} + \dfrac{{ - 1}}{2} - \dfrac{{\sqrt 3 i}}{2} = 1 - 1 + 0 = 0
Hence, proved
Therefore, due to this property; in this question we have assumed that 1+ω+ω2=01 + \omega + {\omega ^2} = 0 and we were able to find the required answer.