Solveeit Logo

Question

Question: If \[\omega \] is a complex \[n{\rm{th}}\] root of unity, then \[\sum\limits_{r = 1}^n {\left( {ar +...

If ω\omega is a complex nthn{\rm{th}} root of unity, then r=1n(ar+b)ωr1\sum\limits_{r = 1}^n {\left( {ar + b} \right){\omega ^{r - 1}}} is equal to
(a) n(n+1)a2\dfrac{{n\left( {n + 1} \right)a}}{2}
(b) nb1n\dfrac{{nb}}{{1 - n}}
(c) naω1\dfrac{{na}}{{\omega - 1}}
(d) None of these

Explanation

Solution

Here, we will expand this sum, and factor out aa and bb from the terms. Then, we will simplify the sum further by using the formula for the sum of terms of a geometric progression. Finally, we will use the given information to simplify the expression and obtain the required value of the sum.
Formula Used: We will use the formula for the sum of nn terms of a G.P. is given by the formula a(rn1)r1\dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}, where aa is the first term, rr is the common ratio, and nn is the number of terms of the G.P.

Complete step by step solution:
Let the sum r=1n(ar+b)ωr1\sum\limits_{r = 1}^n {\left( {ar + b} \right){\omega ^{r - 1}}} be SS.
Expanding the sum, we get
S=(a×1+b)ω11+(a×2+b)ω21+(a×3+b)ω31++(a×n+b)ωn1S = \left( {a \times 1 + b} \right){\omega ^{1 - 1}} + \left( {a \times 2 + b} \right){\omega ^{2 - 1}} + \left( {a \times 3 + b} \right){\omega ^{3 - 1}} + \ldots \ldots \ldots + \left( {a \times n + b} \right){\omega ^{n - 1}}
Simplifying the expansion, we get
S=(a+b)ω0+(2a+b)ω1+(3a+b)ω2++(an+b)ωn1 S=(a+b)1+(2a+b)ω+(3a+b)ω2++(an+b)ωn1 S=(a+b)+(2a+b)ω+(3a+b)ω2++(an+b)ωn1\begin{array}{l} \Rightarrow S = \left( {a + b} \right){\omega ^0} + \left( {2a + b} \right){\omega ^1} + \left( {3a + b} \right){\omega ^2} + \ldots \ldots \ldots + \left( {an + b} \right){\omega ^{n - 1}}\\\ \Rightarrow S = \left( {a + b} \right)1 + \left( {2a + b} \right)\omega + \left( {3a + b} \right){\omega ^2} + \ldots \ldots \ldots + \left( {an + b} \right){\omega ^{n - 1}}\\\ \Rightarrow S = \left( {a + b} \right) + \left( {2a + b} \right)\omega + \left( {3a + b} \right){\omega ^2} + \ldots \ldots \ldots + \left( {an + b} \right){\omega ^{n - 1}}\end{array}
Multiplying the terms using the distributive law of multiplication, we get
S=(a+b)+(2aω+bω)+(3aω2+bω2)++(anωn1+bωn1)\Rightarrow S = \left( {a + b} \right) + \left( {2a\omega + b\omega } \right) + \left( {3a{\omega ^2} + b{\omega ^2}} \right) + \ldots \ldots \ldots + \left( {an{\omega ^{n - 1}} + b{\omega ^{n - 1}}} \right)
Rewriting the equation by rearranging the terms, we get
S=(a+2aω+3aω2++anωn1)+(b+bω+bω2+bωn1)\Rightarrow S = \left( {a + 2a\omega + 3a{\omega ^2} + \ldots \ldots \ldots + an{\omega ^{n - 1}}} \right) + \left( {b + b\omega + b{\omega ^2} \ldots \ldots \ldots + b{\omega ^{n - 1}}} \right)
Factoring out aa and bb from the expansion, we can simplify the expansion as
S=a(1+2ω+3ω2++nωn1)+b(1+ω+ω2+ωn1)\Rightarrow S = a\left( {1 + 2\omega + 3{\omega ^2} + \ldots \ldots \ldots + n{\omega ^{n - 1}}} \right) + b\left( {1 + \omega + {\omega ^2} \ldots \ldots \ldots + {\omega ^{n - 1}}} \right)
Let 1+2ω+3ω2++nωn11 + 2\omega + 3{\omega ^2} + \ldots \ldots \ldots + n{\omega ^{n - 1}} be S1{S_1} and 1+ω+ω2+ωn11 + \omega + {\omega ^2} \ldots \ldots \ldots + {\omega ^{n - 1}} be S2{S_2}.
Thus, we get
S=aS1+bS2(1)\Rightarrow S = a{S_1} + b{S_2} \ldots \ldots \ldots \left( 1 \right)
We will simplify S1{S_1} first.
We have
S1=1+2ω+3ω2++nωn1\Rightarrow {S_1} = 1 + 2\omega + 3{\omega ^2} + \ldots \ldots \ldots + n{\omega ^{n - 1}}
Multiplying both sides of the equation by ω\omega , we get
S1ω=ω+2ω2+3ω3++nωn S1ω=ω+2ω2+3ω3++(n1)ωn1+nωn\begin{array}{l} \Rightarrow {S_1}\omega = \omega + 2{\omega ^2} + 3{\omega ^3} + \ldots \ldots \ldots + n{\omega ^n}\\\ \Rightarrow {S_1}\omega = \omega + 2{\omega ^2} + 3{\omega ^3} + \ldots \ldots \ldots + \left( {n - 1} \right){\omega ^{n - 1}} + n{\omega ^n}\end{array}
Subtracting the equation S1ω=ω+2ω2+3ω3++(n1)ωn1+nωn{S_1}\omega = \omega + 2{\omega ^2} + 3{\omega ^3} + \ldots \ldots \ldots + \left( {n - 1} \right){\omega ^{n - 1}} + n{\omega ^n} from the equation S1=1+2ω+3ω2++nωn1{S_1} = 1 + 2\omega + 3{\omega ^2} + \ldots \ldots \ldots + n{\omega ^{n - 1}}, we get
S1S1ω=1+2ω+3ω2++nωn1(ω+2ω2+3ω3++(n1)ωn1+nωn)\Rightarrow {S_1} - {S_1}\omega = 1 + 2\omega + 3{\omega ^2} + \ldots \ldots \ldots + n{\omega ^{n - 1}} - \left( {\omega + 2{\omega ^2} + 3{\omega ^3} + \ldots \ldots \ldots + \left( {n - 1} \right){\omega ^{n - 1}} + n{\omega ^n}} \right)
Thus, we get
S1(1ω)=1+ω+ω2++[n(n1)]ωn1nωn S1(1ω)=1+ω+ω2++[nn+1]ωn1nωn S1(1ω)=1+ω+ω2++ωn1nωn\begin{array}{l} \Rightarrow {S_1}\left( {1 - \omega } \right) = 1 + \omega + {\omega ^2} + \ldots \ldots \ldots + \left[ {n - \left( {n - 1} \right)} \right]{\omega ^{n - 1}} - n{\omega ^n}\\\ \Rightarrow {S_1}\left( {1 - \omega } \right) = 1 + \omega + {\omega ^2} + \ldots \ldots \ldots + \left[ {n - n + 1} \right]{\omega ^{n - 1}} - n{\omega ^n}\\\ \Rightarrow {S_1}\left( {1 - \omega } \right) = 1 + \omega + {\omega ^2} + \ldots \ldots \ldots + {\omega ^{n - 1}} - n{\omega ^n}\end{array}
The terms in the sum 1+ω+ω2++ωn11 + \omega + {\omega ^2} + \ldots \ldots \ldots + {\omega ^{n - 1}} form a geometric progression, where the first term is 1, the common ratio is ω\omega , and the number of terms is nn.
Substituting n=nn = n, r=ωr = \omega , and a=1a = 1 in the formula for sum of terms of a G.P., a(rn1)r1\dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}, we get
1+ω+ω2++ωn1=1(ωn1)ω1 1+ω+ω2++ωn1=ωn1ω1(2)\begin{array}{l} \Rightarrow 1 + \omega + {\omega ^2} + \ldots \ldots \ldots + {\omega ^{n - 1}} = \dfrac{{1\left( {{\omega ^n} - 1} \right)}}{{\omega - 1}}\\\ \Rightarrow 1 + \omega + {\omega ^2} + \ldots \ldots \ldots + {\omega ^{n - 1}} = \dfrac{{{\omega ^n} - 1}}{{\omega - 1}} \ldots \ldots \ldots \left( 2 \right)\end{array}
Substituting 1+ω+ω2++ωn1=ωn1ω11 + \omega + {\omega ^2} + \ldots \ldots \ldots + {\omega ^{n - 1}} = \dfrac{{{\omega ^n} - 1}}{{\omega - 1}} in the equation S1(1ω)=1+ω+ω2++ωn1nωn{S_1}\left( {1 - \omega } \right) = 1 + \omega + {\omega ^2} + \ldots \ldots \ldots + {\omega ^{n - 1}} - n{\omega ^n}, we get
S1(1ω)=ωn1ω1nωn\Rightarrow {S_1}\left( {1 - \omega } \right) = \dfrac{{{\omega ^n} - 1}}{{\omega - 1}} - n{\omega ^n}
It is given that ω\omega is a complex nthn{\rm{th}} root of unity.
Therefore, we get
ω=1n\omega = \sqrt[n]{1}
Thus, ωn=1{\omega ^n} = 1.
Substituting ωn=1{\omega ^n} = 1 in the equation, we get
S1(1ω)=11ω1n(1) S1(1ω)=0ω1n\begin{array}{l} \Rightarrow {S_1}\left( {1 - \omega } \right) = \dfrac{{1 - 1}}{{\omega - 1}} - n\left( 1 \right)\\\ \Rightarrow {S_1}\left( {1 - \omega } \right) = \dfrac{0}{{\omega - 1}} - n\end{array}
Thus, we get
S1(1ω)=0n S1(1ω)=n\begin{array}{l} \Rightarrow {S_1}\left( {1 - \omega } \right) = 0 - n\\\ \Rightarrow {S_1}\left( {1 - \omega } \right) = - n\end{array}
Dividing both sides of the equation by 1ω1 - \omega , we get
S1(1ω)1ω=n1ω S1=n1ω\begin{array}{l} \Rightarrow \dfrac{{{S_1}\left( {1 - \omega } \right)}}{{1 - \omega }} = \dfrac{{ - n}}{{1 - \omega }}\\\ \Rightarrow {S_1} = \dfrac{{ - n}}{{1 - \omega }}\end{array}
Now, we will find the sum S2{S_2}.
We have
S2=1+ω+ω2+ωn1{S_2} = 1 + \omega + {\omega ^2} \ldots \ldots \ldots + {\omega ^{n - 1}}
Substituting 1+ω+ω2++ωn1=ωn1ω11 + \omega + {\omega ^2} + \ldots \ldots \ldots + {\omega ^{n - 1}} = \dfrac{{{\omega ^n} - 1}}{{\omega - 1}} from equation (2)\left( 2 \right), we get
S2=ωn1ω1\Rightarrow {S_2} = \dfrac{{{\omega ^n} - 1}}{{\omega - 1}}
Substituting ωn=1{\omega ^n} = 1 in the equation, we get
S2=11ω1 S2=0ω1\begin{array}{l} \Rightarrow {S_2} = \dfrac{{1 - 1}}{{\omega - 1}}\\\ \Rightarrow {S_2} = \dfrac{0}{{\omega - 1}}\end{array}
Thus, we get
S2=0\Rightarrow {S_2} = 0
Now, we can find the sum SS.
Substituting S1=n1ω{S_1} = \dfrac{{ - n}}{{1 - \omega }} and S2=0{S_2} = 0 in equation (1)\left( 1 \right), we get
S=a(n1ω)+b(0)\Rightarrow S = a\left( {\dfrac{{ - n}}{{1 - \omega }}} \right) + b\left( 0 \right)
Multiplying the terms of the expression, we get
S=an1ω+0\Rightarrow S = \dfrac{{ - an}}{{1 - \omega }} + 0
Therefore, we get
S=an1ω\Rightarrow S = \dfrac{{ - an}}{{1 - \omega }}
Simplifying the expression, we get
S=na(ω1) S=naω1\begin{array}{l} \Rightarrow S = \dfrac{{ - na}}{{ - \left( {\omega - 1} \right)}}\\\ \Rightarrow S = \dfrac{{na}}{{\omega - 1}}\end{array}
\therefore We get the value of the sum r=1n(ar+b)ωr1\sum\limits_{r = 1}^n {\left( {ar + b} \right){\omega ^{r - 1}}} as naω1\dfrac{{na}}{{\omega - 1}}.

Thus, the correct option is option (c).

Note:
We have used the distributive law of multiplication in the solution. The distributive law of multiplication states that a(b+c)=ab+aca\left( {b + c} \right) = a \cdot b + a \cdot c. Here, the sum is in geometric progression. Geometric progression is a sequence or series in which the two consecutive differences are by a common ratio. However, arithmetic progression is a series or sequence in which there is a common difference between two consecutive numbers.