Solveeit Logo

Question

Question: If \(\omega \) is a complex cube root of unity then find \({{\omega }^{17}}\). A. 0 B. 1 C. \(...

If ω\omega is a complex cube root of unity then find ω17{{\omega }^{17}}.
A. 0
B. 1
C. ω\omega
D. ω2{{\omega }^{2}}

Explanation

Solution

We first find the speciality about ω\omega , the complex cube root of unity. We use the value of x=ωx=\omega as the imaginary cube root of unity. We put the value in the expression of ω17{{\omega }^{17}} and find the value using the identities of 1+ω+ω2=0;ω3=11+\omega +{{\omega }^{2}}=0;{{\omega }^{3}}=1.

Complete step by step answer:
We first find the speciality about ω\omega , the complex cube root of unity. As we have ω=1+i32\omega =\dfrac{-1+i\sqrt{3}}{2}, we can take it as any of the imaginary roots. With the value of ω\omega , we know the identities involved and they are,
1+ω+ω2=0;ω3=11+\omega +{{\omega }^{2}}=0;{{\omega }^{3}}=1
We now express ω17{{\omega }^{17}} using indices.
ω17=ω15×ω2 ω17=(ω3)5×ω2{{\omega }^{17}}={{\omega }^{15}}\times {{\omega }^{2}} \\\ \Rightarrow {{\omega }^{17}}={{\left( {{\omega }^{3}} \right)}^{5}}\times {{\omega }^{2}}
We replace the value ω3=1{{\omega }^{3}}=1.
ω17=(ω3)5×ω2 ω17=ω2{{\omega }^{17}}={{\left( {{\omega }^{3}} \right)}^{5}}\times {{\omega }^{2}} \\\ \therefore {{\omega }^{17}} ={{\omega }^{2}}

therefore, the correct option is D.

Note: We can also solve the problem assuming the value of ω2=1+i32{{\omega }^{2}}=\dfrac{-1+i\sqrt{3}}{2}. We can take the imaginary value of x=1+i32x=\dfrac{-1+i\sqrt{3}}{2} as any of ω,ω2\omega ,{{\omega }^{2}} as the square value gives the other imaginary root of x=1i32x=\dfrac{-1-i\sqrt{3}}{2}. Also, we need to remember that as we multiplied the term x1x-1, it gives us the real root.