Solveeit Logo

Question

Mathematics Question on Geometric Progression

If ω\omega is a complex cube root of unity, then ω(13+29+427+)+ω(12+38+932+) is equal to \omega^{\left(\frac{1}{3}+\frac{2}{9}+\frac{4}{27}+\ldots \infty\right)}+\omega^{\left(\frac{1}{2}+\frac{3}{8}+\frac{9}{32}+\ldots \infty\right) \text { is equal to }}

A

1

B

-1

C

ω\omega

D

i

Answer

-1

Explanation

Solution

Given that, ω(13+29+427+)+ω(12+38+932+)\omega^{\left(\frac{1}{3}+\frac{2}{9}+\frac{4}{27}+\ldots \infty\right)}+\omega^{\left(\frac{1}{2}+\frac{3}{8}+\frac{9}{32}+\ldots \infty\right)} Now, ω(13+29+427+)\omega^{\left(\frac{1}{3}+\frac{2}{9}+\frac{4}{27}+\ldots \infty\right)} 13+29+427+\because \frac{1}{3}+\frac{2}{9}+\frac{4}{27}+\ldots \infty [infinite GP] S=a1r=13123\therefore S_{\infty}=\frac{a}{1-r}=\frac{\frac{1}{3}}{1-\frac{2}{3}} [\left[\right. where, a=13,r=29+13=29×31=23]\left.a=\frac{1}{3}, r=\frac{2}{9}+\frac{1}{3}=\frac{2}{9} \times \frac{3}{1}=\frac{2}{3}\right] =13×31=1=\frac{1}{3} \times \frac{3}{1}=1 and ω(12+38+932+)\omega^{\left(\frac{1}{2}+\frac{3}{8}+\frac{9}{32}+\ldots \infty\right)} 12+38+932+.+\because \frac{1}{2}+\frac{3}{8}+\frac{9}{32}+\ldots .+\infty [infinite GP] sα=a1r[ where, a=12,r=38×21=34]\therefore s_{\alpha}= \frac{a}{1-r} [\text { where, } a=\frac{1}{2}, r=\frac{3}{8} \times \frac{2}{1}=\frac{3}{4}] =12134=12×41=2=\frac{\frac{1}{2}}{1-\frac{3}{4}}=\frac{1}{2} \times \frac{4}{1}=2 ω1+ω2=1\therefore \omega^{1}+\omega^{2}=-1 [ω2+ω+1=0[\because \omega^{2}+\omega+1=0 ω2+ω=1]\Rightarrow \omega^{2}+\omega=-1]