Solveeit Logo

Question

Mathematics Question on Properties of Determinants

If ω\omega is a complex cube-root of unity then, 1ωω2 ωω21 ω21ω \begin{vmatrix} {1}&{\omega} &{\omega^2}\\\ {\omega}&{\omega^2}& {1} \\\ {\omega^2}&{1}&{\omega}\\\ \end{vmatrix} is equal to

A

-1

B

1

C

0

D

ω\omega

Answer

0

Explanation

Solution

Let A=1ωω2 ωω21 ω21ω A =\begin{vmatrix}1 & \omega & \omega^{2} \\\ \omega & \omega^{2} & 1 \\\ \omega^{2} & 1 & \omega\end{vmatrix} =1+ω+ω2ωω2 1+ω+ω2ω21 1+ω+ω21ω=\begin{vmatrix}1+\omega+\omega^{2} & \omega & \omega^{2} \\\ 1+\omega+\omega^{2} & \omega^{2} & 1 \\\ 1+\omega+\omega^{2} & 1 & \omega\end{vmatrix} C1C1+C2+C3C_{1} \rightarrow C_{1}+C_{2}+C_{3} =0ωω2 0ω21 01ω=\begin{vmatrix}0 & \omega & \omega^{2} \\\ 0 & \omega^{2} & 1 \\\ 0 & 1 & \omega\end{vmatrix} [1+ω+ω2=0]\left[\because 1+\omega+\omega^{2}=0\right] =0=0