Solveeit Logo

Question

Mathematics Question on Matrices

If ω\omega is a complex cube root of unity, then the matrix A=[1ω2ω ω2ω1 ω1ω2]A = \begin{bmatrix}1&\omega^{2}&\omega\\\ \omega ^{2}&\omega&1\\\ \omega&1&\omega ^{2}\end{bmatrix} is

A

symmetric matrix

B

diagonal matrix

C

skew-symmetric matrix

D

none of these

Answer

symmetric matrix

Explanation

Solution

A=[1ω2ω ω2ω1 ω1ω2]AT=[1ω2ω ω2ω1 ω1ω2]=AA = \begin{bmatrix}1&\omega^{2}&\omega\\\ \omega ^{2}&\omega&1\\\ \omega&1&\omega ^{2}\end{bmatrix} \Rightarrow A^{T}= \begin{bmatrix}1&\omega ^{2}&\omega \\\ \omega ^{2}&\omega &1\\\ \omega &1&\omega ^{2}\end{bmatrix} = A AT=A\because A^{T} = A. Hence, AA is symmetric matrix.