Solveeit Logo

Question

Mathematics Question on Determinants

If ω\omega is a complex cube root of unity, then 1ωω2\[0.3em]ωω21\[0.3em]ω21ω \begin{vmatrix} 1 & \omega& \omega^2 \\\[0.3em] \omega& \omega^2 & 1 \\\[0.3em] \omega^2 & 1& \omega \end{vmatrix} is equal to

A

-1

B

1

C

0

D

ω\omega

Answer

0

Explanation

Solution

LetA=1ωω2\[0.3em]ωω21\[0.3em]ω21ωLet\,A= \begin{vmatrix} 1 & \omega& \omega^2 \\\[0.3em] \omega& \omega^2 & 1 \\\[0.3em] \omega^2 & 1& \omega \end{vmatrix}
LetA=1+ω+ω2ωω2\[0.3em]1+ω+ω2ω21\[0.3em]1+ω+ω21ωLet\,A= \begin{vmatrix} 1 +\omega +\omega^2& \omega& \omega^2 \\\[0.3em] 1+ \omega+\omega^2 & \omega^2 & 1 \\\[0.3em] 1+\omega+\omega^2 & 1& \omega \end{vmatrix}
C1C1+C2+C3C_1 \to C_1+C_2+C_3
LetA=0ωω2\[0.3em]0ω21\[0.3em]01ω[=1+ω+ω+ω2=0]Let\,A= \begin{vmatrix} 0& \omega& \omega^2 \\\[0.3em] 0 & \omega^2 & 1 \\\[0.3em] 0 & 1& \omega \end{vmatrix} [=1+\omega+\omega+\omega^2=0] =0