Solveeit Logo

Question

Question: If \(\omega \) be the angle which a focal chord of a parabola makes with the axis, prove that the le...

If ω\omega be the angle which a focal chord of a parabola makes with the axis, prove that the length of the chord is 4acosec2ω4a{{\operatorname{cosec}}^{2}}\omega and that the perpendicular on it from the vertex is asinωa\sin \omega .

Explanation

Solution

We start solving the problem by assuming the equation of parabola and ends of the focal chord. We then find the equation of the focal chord using these points and compare with the standard formy=mx+cy=mx+c. We then use the fact that the slope of the line is defined as tangent of the angle made by the line with x-axis to get the difference relations between the coordinates of the assumed points. We then use this relationship to find the length of the focal chord and perpendicular distance from vertex to the focal chord.

Complete step by step answer:
According to the problem, we are given that ω\omega be the angle which a focal chord of a parabola makes with the axis and we need to prove that the length of the chord is 4acosec2ω4a{{\operatorname{cosec}}^{2}}\omega and that the perpendicular on it from the vertex is asinωa\sin \omega .
Let us assume the equation of parabola be y2=4ax{{y}^{2}}=4ax and ends of the focal chord in the parabola is A(at12,2at1)A\left( at_{1}^{2},2a{{t}_{1}} \right) and B(at22,2at2)B\left( at_{2}^{2},2a{{t}_{2}} \right). We know that for a focal chord t1t2=1{{t}_{1}}{{t}_{2}}=-1 ---(1).

Let us find the equation of the focal chord.
We know that the equation of the line passing through the point (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) is yy1=(y2y1x2x1)×(xx1)y-{{y}_{1}}=\left( \dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}} \right)\times \left( x-{{x}_{1}} \right).
So, we get the equation of focal chord as y2at1=(2at22at1at22at12)×(xat12)y-2a{{t}_{1}}=\left( \dfrac{2a{{t}_{2}}-2a{{t}_{1}}}{at_{2}^{2}-at_{1}^{2}} \right)\times \left( x-at_{1}^{2} \right).
Cancelling out similar terms and expanding the denominator, we have
y2at1=(2(t2t1)(t2t1)(t2+t1))×(xat12)\Rightarrow y-2a{{t}_{1}}=\left( \dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)} \right)\times \left( x-at_{1}^{2} \right).
y2at1=(2(t2+t1))×(xat12)\Rightarrow y-2a{{t}_{1}}=\left( \dfrac{2}{\left( {{t}_{2}}+{{t}_{1}} \right)} \right)\times \left( x-at_{1}^{2} \right).
y2at1=(2(t2+t1))x(2at12(t2+t1))\Rightarrow y-2a{{t}_{1}}=\left( \dfrac{2}{\left( {{t}_{2}}+{{t}_{1}} \right)} \right)x-\left( \dfrac{2at_{1}^{2}}{\left( {{t}_{2}}+{{t}_{1}} \right)} \right).
y=(2(t2+t1))x(2at12(t2+t1))+2at1\Rightarrow y=\left( \dfrac{2}{\left( {{t}_{2}}+{{t}_{1}} \right)} \right)x-\left( \dfrac{2at_{1}^{2}}{\left( {{t}_{2}}+{{t}_{1}} \right)} \right)+2a{{t}_{1}}.
Taking the LCM of the terms, we have
y=(2(t2+t1))x2at12(t2+t1)+2at12+2at1t2(t2+t1)\Rightarrow y=\left( \dfrac{2}{\left( {{t}_{2}}+{{t}_{1}} \right)} \right)x-\dfrac{2at_{1}^{2}}{\left( {{t}_{2}}+{{t}_{1}} \right)}+\dfrac{2at_{1}^{2}+2a{{t}_{1}}{{t}_{2}}}{\left( {{t}_{2}}+{{t}_{1}} \right)}.
y=(2(t2+t1))x+2at12+2at12+2at1t2(t2+t1)\Rightarrow y=\left( \dfrac{2}{\left( {{t}_{2}}+{{t}_{1}} \right)} \right)x+\dfrac{-2at_{1}^{2}+2at_{1}^{2}+2a{{t}_{1}}{{t}_{2}}}{\left( {{t}_{2}}+{{t}_{1}} \right)}.
y=(2(t2+t1))x+(2at1t2(t2+t1))\Rightarrow y=\left( \dfrac{2}{\left( {{t}_{2}}+{{t}_{1}} \right)} \right)x+\left( \dfrac{2a{{t}_{1}}{{t}_{2}}}{\left( {{t}_{2}}+{{t}_{1}} \right)} \right).
From equation (1), we get equation of focal chord as y=(2(t2+t1))x2a(t2+t1)y=\left( \dfrac{2}{\left( {{t}_{2}}+{{t}_{1}} \right)} \right)x-\dfrac{2a}{\left( {{t}_{2}}+{{t}_{1}} \right)} ---(2).
Comparing with the standard equation y=mx+cy=mx+c, we get slope as m=2t1+t2m=\dfrac{2}{{{t}_{1}}+{{t}_{2}}}.
We know that the slope of the line is defined as the tangent of the angle made by the line with x-axis.
Since the focal chord makes an angle ω\omega with the x-axis. So, we get m=tanωm=\tan \omega .
So, we get tanω=2t1+t2\tan \omega =\dfrac{2}{{{t}_{1}}+{{t}_{2}}} ---(3). Let us substitute equation (3) in equation (2).
So, we get the equation of the focal chord as y=tanωxatanωy=\tan \omega x-a\tan \omega ---(4).
From equation (3), we have t1+t2=2tanω{{t}_{1}}+{{t}_{2}}=\dfrac{2}{\tan \omega }.
t1+t2=2cotω\Rightarrow {{t}_{1}}+{{t}_{2}}=2\cot \omega ---(5).
Now, let us square on both sides.
So, we get (t1+t2)2=(2cotω)2{{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}={{\left( 2\cot \omega \right)}^{2}}.
(t1+t2)2=4cot2ω\Rightarrow {{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}=4{{\cot }^{2}}\omega .
(t1t2)2+4t1t2=4cot2ω\Rightarrow {{\left( {{t}_{1}}-{{t}_{2}} \right)}^{2}}+4{{t}_{1}}{{t}_{2}}=4{{\cot }^{2}}\omega .
From equation (1), we get (t1t2)24=4cot2ω{{\left( {{t}_{1}}-{{t}_{2}} \right)}^{2}}-4=4{{\cot }^{2}}\omega .
(t1t2)2=4+4cot2ω\Rightarrow {{\left( {{t}_{1}}-{{t}_{2}} \right)}^{2}}=4+4{{\cot }^{2}}\omega .
(t1t2)2=4(1+cot2ω)\Rightarrow {{\left( {{t}_{1}}-{{t}_{2}} \right)}^{2}}=4\left( 1+{{\cot }^{2}}\omega \right).
(t1t2)2=4(cosec2ω)\Rightarrow {{\left( {{t}_{1}}-{{t}_{2}} \right)}^{2}}=4\left( {{\operatorname{cosec}}^{2}}\omega \right).
t1t2=2cosecω\Rightarrow {{t}_{1}}-{{t}_{2}}=2\operatorname{cosec}\omega ---(6)
Let us find the length of the focal chord i.e., the distance between the points A(at12,2at1)A\left( at_{1}^{2},2a{{t}_{1}} \right) and B(at22,2at2)B\left( at_{2}^{2},2a{{t}_{2}} \right).
So, the length of focal chord = (at22at12)2+(2at22at1)2\sqrt{{{\left( at_{2}^{2}-at_{1}^{2} \right)}^{2}}+{{\left( 2a{{t}_{2}}-2a{{t}_{1}} \right)}^{2}}}.
Length of focal chord = (a(t2t1)(t2+t1))2+(2a(t2t1))2\sqrt{{{\left( a\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right) \right)}^{2}}+{{\left( 2a\left( {{t}_{2}}-{{t}_{1}} \right) \right)}^{2}}}.
Length of focal chord = a2(t2t1)2((t2+t1)2+(2)2)\sqrt{{{a}^{2}}{{\left( {{t}_{2}}-{{t}_{1}} \right)}^{2}}\left( {{\left( {{t}_{2}}+{{t}_{1}} \right)}^{2}}+{{\left( 2 \right)}^{2}} \right)}.
From equations (5) and (6), we get
Length of focal chord = a2(2cosecω)2((2cotω)2+(2)2)\sqrt{{{a}^{2}}{{\left( 2\operatorname{cosec}\omega \right)}^{2}}\left( {{\left( 2\cot \omega \right)}^{2}}+{{\left( 2 \right)}^{2}} \right)}.
Length of focal chord = 4a2cosec2ω(4cot2ω+4)\sqrt{4{{a}^{2}}{{\operatorname{cosec}}^{2}}\omega \left( 4{{\cot }^{2}}\omega +4 \right)}.
Length of focal chord = 4a2cosec2ω(4cosec2ω)\sqrt{4{{a}^{2}}{{\operatorname{cosec}}^{2}}\omega \left( 4{{\operatorname{cosec}}^{2}}\omega \right)}.
Length of focal chord = 16a2cosec4ω\sqrt{16{{a}^{2}}{{\operatorname{cosec}}^{4}}\omega }.
Length of focal chord = 4acosec2ω4a{{\operatorname{cosec}}^{2}}\omega .
So, we have proved that the length of the focal chord is 4acosec2ω4a{{\operatorname{cosec}}^{2}}\omega .
Now, we know that the vertex of the parabola y2=4ax{{y}^{2}}=4ax is (0,0)\left( 0,0 \right). Let us find the perpendicular distance from (0,0)\left( 0,0 \right) to the focal chord y=tanωxatanωtanωxyatanω=0y=\tan \omega x-a\tan \omega \Leftrightarrow \tan \omega x-y-a\tan \omega =0.
We know that the perpendicular distance from the (p,q)\left( p,q \right) to the line ax+by+c=0ax+by+c=0 is ap+bq+ca2+b2\dfrac{\left| ap+bq+c \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}}}.
So, the perpendicular distance from (0,0)\left( 0,0 \right) to the focal chord tanωxyatanω=0\tan \omega x-y-a\tan \omega =0 is tanω(0)0atanωtan2ω+(1)2\dfrac{\left| \tan \omega \left( 0 \right)-0-a\tan \omega \right|}{\sqrt{{{\tan }^{2}}\omega +{{\left( -1 \right)}^{2}}}}.
tanω(0)0atanωtan2ω+(1)2=0atanωtan2ω+1\Rightarrow \dfrac{\left| \tan \omega \left( 0 \right)-0-a\tan \omega \right|}{\sqrt{{{\tan }^{2}}\omega +{{\left( -1 \right)}^{2}}}}=\dfrac{\left| 0-a\tan \omega \right|}{\sqrt{{{\tan }^{2}}\omega +1}}.
tanω(0)0atanωtan2ω+(1)2=atanωsec2ω\Rightarrow \dfrac{\left| \tan \omega \left( 0 \right)-0-a\tan \omega \right|}{\sqrt{{{\tan }^{2}}\omega +{{\left( -1 \right)}^{2}}}}=\dfrac{a\tan \omega }{\sqrt{{{\sec }^{2}}\omega }}.
tanω(0)0atanωtan2ω+(1)2=atanωsecω\Rightarrow \dfrac{\left| \tan \omega \left( 0 \right)-0-a\tan \omega \right|}{\sqrt{{{\tan }^{2}}\omega +{{\left( -1 \right)}^{2}}}}=\dfrac{a\tan \omega }{\sec \omega }.
tanω(0)0atanωtan2ω+(1)2=asinωcosω1cosω\Rightarrow \dfrac{\left| \tan \omega \left( 0 \right)-0-a\tan \omega \right|}{\sqrt{{{\tan }^{2}}\omega +{{\left( -1 \right)}^{2}}}}=\dfrac{\dfrac{a\sin \omega }{\cos \omega }}{\dfrac{1}{\cos \omega }}.
tanω(0)0atanωtan2ω+(1)2=asinω\Rightarrow \dfrac{\left| \tan \omega \left( 0 \right)-0-a\tan \omega \right|}{\sqrt{{{\tan }^{2}}\omega +{{\left( -1 \right)}^{2}}}}=a\sin \omega .

So, we have found the perpendicular distance on the focal chord from the vertex as asinωa\sin \omega .

Note: We can see that the problems contain heavy amounts of calculation this may give us confusion and will make us perform mistakes. We should know that the focal chord passes through the focus of the parabola and the latus rectum is one of the focal-chord. We can also assume the ends of the latus rectum to prove the required results of the problem.