Solveeit Logo

Question

Question: If odds against solving a question by three students are 2 : 1, \(5 : 2\) and \(5 : 3\) respectively...

If odds against solving a question by three students are 2 : 1, 5:25 : 2 and 5:35 : 3 respectively, then probability that the question is solved only by one student is

A

3156\frac { 31 } { 56 }

B

2456\frac { 24 } { 56 }

C

2556\frac { 25 } { 56 }

D

None of these

Answer

2556\frac { 25 } { 56 }

Explanation

Solution

The probability of solving the question by these three students are 13,27\frac { 1 } { 3 } , \frac { 2 } { 7 } and 38\frac { 3 } { 8 } respectively.

P(A)=13P ( A ) = \frac { 1 } { 3 } ; P(B)=27P ( B ) = \frac { 2 } { 7 }; P(C)=38P ( C ) = \frac { 3 } { 8 }

Then probability of question solved by only one student

=P(ABˉCˉ= P ( A \bar { B } \bar { C } or AˉBCˉ\bar { A } B \bar { C } or AˉBˉC)\bar { A } \bar { B } C )

=P(A)P(Bˉ)P(Cˉ)+P(Aˉ)P(B)P(Cˉ)+P(Aˉ)P(Bˉ)P(C)= P ( A ) P ( \bar { B } ) P ( \bar { C } ) + P ( \bar { A } ) P ( B ) P ( \bar { C } ) + P ( \bar { A } ) P ( \bar { B } ) P ( C )

=135758+232758+235738= \frac { 1 } { 3 } \cdot \frac { 5 } { 7 } \cdot \frac { 5 } { 8 } + \frac { 2 } { 3 } \cdot \frac { 2 } { 7 } \cdot \frac { 5 } { 8 } + \frac { 2 } { 3 } \cdot \frac { 5 } { 7 } \cdot \frac { 3 } { 8 } =25+20+30168= \frac { 25 + 20 + 30 } { 168 } =2556= \frac { 25 } { 56 }.