Solveeit Logo

Question

Question: If OA and OB be the tangents to the circle \(x ^ { 2 } + y ^ { 2 } - 6 x - 8 y + 21 = 0\)drawn from ...

If OA and OB be the tangents to the circle x2+y26x8y+21=0x ^ { 2 } + y ^ { 2 } - 6 x - 8 y + 21 = 0drawn from the origin O, then

AB =

A

11

B

4521\frac { 4 } { 5 } \sqrt { 21 }

C

173\sqrt { \frac { 17 } { 3 } }

D

None of these

Answer

4521\frac { 4 } { 5 } \sqrt { 21 }

Explanation

Solution

Here the equation of AB (chord of contact) is

0+03(x+0)4(y+0)+21=00 + 0 - 3 ( x + 0 ) - 4 ( y + 0 ) + 21 = 0

3x+4y21=0\Rightarrow 3 x + 4 y - 21 = 0 ….(i)

CM = perpendicular distance from (3, 4) to line (i) is

3×3+4×4219+16=45\frac { 3 \times 3 + 4 \times 4 - 21 } { \sqrt { 9 + 16 } } = \frac { 4 } { 5 }

AM=AC2CM2=41625=2521A M = \sqrt { A C ^ { 2 } - C M ^ { 2 } } = \sqrt { 4 - \frac { 16 } { 25 } } = \frac { 2 } { 5 } \sqrt { 21 }

.