Solveeit Logo

Question

Mathematics Question on Complex Numbers

If ω is an imaginary cube root of 1, then the value of 1(2 - ω) (2 - ω2)+ 2(3 - ω) (3 - ω2)+ … + (n-1)(n - ω) (n - ω2) is

A

n(n+1)2n\frac{n(n+1)}{2}-n

B

n2(n+1)24n\frac{n^2(n+1)^2}{4}-n

C

n(n+1)2+n\frac{n(n+1)}{2}+n

D

n2(n+1)24+n\frac{n^2(n+1)^2}{4}+n

Answer

n2(n+1)24n\frac{n^2(n+1)^2}{4}-n

Explanation

Solution

The correct option is (B) : n2(n+1)24n\frac{n^2(n+1)^2}{4}-n.