Solveeit Logo

Question

Question: If O be the origin and the position vector of A be \(4\mathbf{i} + 5\mathbf{j},\) then a unit vector...

If O be the origin and the position vector of A be 4i+5j,4\mathbf{i} + 5\mathbf{j}, then a unit vector parallel to OA\overset{\rightarrow}{OA} is

A

441i\frac{4}{\sqrt{41}}\mathbf{i}

B

541i\frac{5}{\sqrt{41}}\mathbf{i}

C

141(4i+5j)\frac{1}{\sqrt{41}}(4\mathbf{i} + 5\mathbf{j})

D

141(4i5j)\frac{1}{\sqrt{41}}(4\mathbf{i} - 5\mathbf{j})

Answer

141(4i+5j)\frac{1}{\sqrt{41}}(4\mathbf{i} + 5\mathbf{j})

Explanation

Solution

Unit vector prarallel to OA\overset{\rightarrow}{OA} =4i+5j16+25=141(4i+5j).= \frac{4\mathbf{i} + 5\mathbf{j}}{\sqrt{16 + 25}} = \frac{1}{\sqrt{41}}(4\mathbf{i} + 5\mathbf{j}).