Solveeit Logo

Question

Question: If O be the origin and if the coordinates of any two points Q<sub>1</sub> and Q<sub>2</sub> be (x<su...

If O be the origin and if the coordinates of any two points Q1 and Q2 be (x1, y1) and (x2, y2) respectively, then OQ1. OQ2cos Q1OQ2 =

A

x1x2 – y1y2

B

x1y1 – x2y2

C

x1x2 + y1y2

D

x1y1 + x2y2

Answer

x1x2 + y1y2

Explanation

Solution

cos (ŠQ1OQ2) = (OQ1)2+(OQ2)2(Q1Q2)22OQ1.OQ2\frac{(OQ_{1})^{2} + (OQ_{2})^{2}–(Q_{1}Q_{2})^{2}}{2OQ_{1}.OQ_{2}}

Ž OQ1.OQ2 cos (ŠQ1OQ2) = (OQ1)2 + (OQ2)2 – (Q1Q2)2

Ž x12+y12+x22+y22{(x1x2)2+(y1+y2)2}2\frac{x_{1}^{2} + y_{1}^{2} + x_{2}^{2} + y_{2}^{2}–\{(x_{1}–x_{2})^{2} + (y_{1} + y_{2})^{2}\}}{2}

Ž (x1x2 + y1y2).

Or

Let OQ1\overset{\rightarrow}{OQ_{1}} = x1i + y2j

OQ2\overset{\rightarrow}{OQ_{2}} = x2i + y2j

cos (ŠQ1OQ2) = OQ1.OQ2OQ1.OQ2\frac{\overset{\rightarrow}{OQ_{1}}.\overset{\rightarrow}{OQ_{2}}}{OQ_{1}.OQ_{2}}

Ž OQ1.OQ2 = x1x2 + y1y2.