Solveeit Logo

Question

Question: If O be the circumcentre and O' be the orthocentre of the triangle ABC, then \(\overset{\rightarrow}...

If O be the circumcentre and O' be the orthocentre of the triangle ABC, then OA+OB+OC=\overset{\rightarrow}{O'A} + \overset{\rightarrow}{O'B} + \overset{\rightarrow}{O'C} =

A

OO\overset{\rightarrow}{OO}'

B

2OO2\overset{\rightarrow}{O'O}

C

2OO2\overset{\rightarrow}{OO'}

D

0

Answer

2OO2\overset{\rightarrow}{O'O}

Explanation

Solution

OA=OO+OA\overset{\rightarrow}{O^{'}A} = \overset{\rightarrow}{O^{'}O} + \overset{\rightarrow}{OA}

OB=OO+OB\overset{\rightarrow}{O^{'}B} = \overset{\rightarrow}{O^{'}O} + \overset{\rightarrow}{OB}

OC=OO+OC\overset{\rightarrow}{O^{'}C} = \overset{\rightarrow}{O^{'}O} + \overset{\rightarrow}{OC}

OA+OB+OC\Rightarrow \overset{\rightarrow}{O^{'}A} + \overset{\rightarrow}{O^{'}B} + \overset{\rightarrow}{O^{'}C}

=3OO+OA+OB+OC= 3\overset{\rightarrow}{O^{'}O} + \overset{\rightarrow}{OA} + \overset{\rightarrow}{OB} + \overset{\rightarrow}{OC}

Since OA+OB+OC=OO=OO\overset{\rightarrow}{OA} + \overset{\rightarrow}{OB} + \overset{\rightarrow}{OC} = \overset{\rightarrow}{OO^{'}} = - \overset{\rightarrow}{O^{'}O}

\therefore OA+OB+OC=2OO\overset{\rightarrow}{O^{'}A} + \overset{\rightarrow}{O^{'}B} + \overset{\rightarrow}{O^{'}C} = 2\overset{\rightarrow}{O^{'}O}.