Solveeit Logo

Question

Mathematics Question on Matrices

If O(A)=2×3,O(B)=3×2O(A) = 2 \times 3, O (B) = 3 \times 2, and O(C)=3×3O(C) = 3 \times 3, which one of the following is not defined.

A

C(A+B)C(A+B')

B

C(A+B)C(A+B')'

C

BACBAC

D

CB+ACB+A'

Answer

C(A+B)C(A+B')

Explanation

Solution

Given that O(A)=2×3,O(B)=3×2O\left(A\right) = 2 \times3 , O\left(B\right) = 3\times 2 and O(C)=3×3O\left(C\right) = 3 \times3
O(A)=3×2,O(B)=2×3\Rightarrow \, O\left(A'\right) = 3 \times2 , O\left(B'\right) = 2\times 3
(a) CB+ACB+A'
Now order of CB = (order of C) (order of B)
= (order of C is 3×33 \times 3) (order of B is 3×23 \times 2)
= order of CB is 3×23 \times 2
Since O(A)=3×2O(A' ) = 3 \times 2
\therefore Matrix CB + A' can be determined.
(b) O(BA)=3×3O(BA) = 3 \times 3
and O(C)=3×3O(C) = 3 \times 3
\therefore Matrix BAC can be determined.
(c) C(A+B)C(A + B')'
O(A+B)=2×3O(A + B') = 2 \times 3
  O(A+B)=3×2\Rightarrow \; O(A + B')' = 3 \times 2
and O(C)=3×3O(C) = 3 \times 3
\therefore Matrix C(A+B)C(A + B')' can be determined.
(d) C(A+B)C(A + B')
O(A+B)=2×3O(A + B') = 2 \times 3
and O(C)=3×3O(C) = 3 \times 3
\therefore Matrix C(A+B)C (A + B') cannot be determined