Solveeit Logo

Question

Question: If nth root of unity of a complex number is given as \(\omega \), then \(\sum\limits_{r=1}^{n}{\left...

If nth root of unity of a complex number is given as ω\omega , then r=1n(ar+b)ωr1\sum\limits_{r=1}^{n}{\left( ar+b \right){{\omega }^{r-1}}} is equal to
(a) n(n+1)a2\dfrac{n\left( n+1 \right)a}{2}
(b) ab1n\dfrac{ab}{1-n}
(c) naω1\dfrac{na}{\omega -1}
(d) None of these.

Explanation

Solution

Here, first we have to expand the given sequence and find what type of progression (Arithmetic Progression or Geometric Progression) we have, simplify the series using basic mathematical operations. Use the formula, of geometric progression Sn=a(rn1)r1{{S}_{n}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1} and the given statement saying ωn=1{{\omega }^{n}}=1 to further simplify the series. In the second part, multiply the series by ω\omega and subtract it from the obtained expression and simplify it further to find the required result.

Complete step-by-step solution:
Here, we have a series of summation of (ar+b)ωr1\left( ar+b \right){{\omega }^{r-1}} from r=1r=1 to nn, let us first expand the given sequence and find the series. We need to substitute the value of r from 1 to nn with a ‘+’ sign after every term. Also, we have been given, ω\omega is a complex nth root of unity which means ωn=1{{\omega }^{n}}=1.
Sn{{S}_{n}}= [a(1)+b]ω11+[a(2)+b]ω21+[a(3)+b]ω31+........+[a(n)+b]ωn1\left[ a\left( 1 \right)+b \right]{{\omega }^{1-1}}+\left[ a\left( 2 \right)+b \right]{{\omega }^{2-1}}+\left[ a\left( 3 \right)+b \right]{{\omega }^{3-1}}+........+\left[ a\left( n \right)+b \right]{{\omega }^{n-1}}
Let us simplify the above series by using basic mathematical operations and basic principles of indices, we get
Sn{{S}_{n}}= (a+b)+(2a+b)ω+(3a+b)ω2+(4a+b)ω3+...........+(na+b)ωn1\left( a+b \right)+\left( 2a+b \right)\omega +\left( 3a+b \right){{\omega }^{2}}+\left( 4a+b \right){{\omega }^{3}}+...........+\left( na+b \right){{\omega }^{n-1}}
In the above expression, let us group all the aa terms and bb terms separately, we get
Sn=(a+2aω+3aω2+4aω3+....+naωn1)+(b+bω+bω2+bω3+.....+bωn1){{S}_{n}}=\left( a+2a\omega +3a{{\omega }^{2}}+4a{{\omega }^{3}}+....+na{{\omega }^{n-1}} \right)+\left( b+b\omega +b{{\omega }^{2}}+b{{\omega }^{3}}+.....+b{{\omega }^{n-1}} \right)
Now, let us take aa and bbas common from the above expression and simplify, we get
Sn=a(1+2ω+3ω2+......+nωn1)+b(1+ω+ω2+ω3+......+ωn1){{S}_{n}}=a\left( 1+2\omega +3{{\omega }^{2}}+......+n{{\omega }^{n-1}} \right)+b\left( 1+\omega +{{\omega }^{2}}+{{\omega }^{3}}+......+{{\omega }^{n-1}} \right)………… (1)
Now, we can see that (1+ω+ω2+ω3+......+ωn1)\left( 1+\omega +{{\omega }^{2}}+{{\omega }^{3}}+......+{{\omega }^{n-1}} \right) is in the form of geometric progression and we know that, S=a(rn1)r1S=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1} for geometric progression where we have first term, a=1a=1 and common ratio, r=ωr=\omega , we get
S=1(ωn1)ω1S=\dfrac{1\left( {{\omega }^{n}}-1 \right)}{\omega -1}
Since, we know ωn=1{{\omega }^{n}}=1, we get
S=1(11)ω1 =0\begin{aligned} & S=\dfrac{1\left( 1-1 \right)}{\omega -1} \\\ & =0 \end{aligned}
Therefore, from equation (1) and the above equation, we get
Sn=a(1+2ω+3ω2+......+nωn1)+b(0){{S}_{n}}=a\left( 1+2\omega +3{{\omega }^{2}}+......+n{{\omega }^{n-1}} \right)+b\left( 0 \right)
Sn=a(1+2ω+3ω2+......+nωn1)\Rightarrow{{S}_{n}}=a\left( 1+2\omega +3{{\omega }^{2}}+......+n{{\omega }^{n-1}} \right)............... (2)
Now, we will multiply equation (2) by ω\omega , we get
Snω=aω(1+2ω+3ω2+.....+nωn1) =aω+2aω2+3aω3+.....+naωn\begin{aligned} & {{S}_{n}}\cdot \omega =a\omega \left( 1+2\omega +3{{\omega }^{2}}+.....+n{{\omega }^{n-1}} \right) \\\ & =a\omega +2a{{\omega }^{2}}+3a{{\omega }^{3}}+.....+na{{\omega }^{n}} \end{aligned}
Since, ω1×ωn1=ωn1+1=ωn{{\omega }^{1}}\times {{\omega }^{n-1}}={{\omega }^{n-1+1}}={{\omega }^{n}}.
Snω=aω+2aω2+3aω3+.....+naωn{{S}_{n}}\cdot \omega =a\omega +2a{{\omega }^{2}}+3a{{\omega }^{3}}+.....+na{{\omega }^{n}}……………. (3)
Now, let us subtract equation (3) from equation (2), we get
(2) – (3):
SnSnω=a(1+2ω+3ω2+......+nωn1)aω2aω23aω3.....naωn{{S}_{n}}-{{S}_{n}}\cdot \omega =a\left( 1+2\omega +3{{\omega }^{2}}+......+n{{\omega }^{n-1}} \right)-a\omega -2a{{\omega }^{2}}-3a{{\omega }^{3}}-.....-na{{\omega }^{n}}
Now, let us take aa variable common from the above expression, we get
Sn(1ω)=a(1+2ω+3ω2+.....+nωn1ω2ω23ω3.....nωn){{S}_{n}}\left( 1-\omega \right)=a\left( 1+2\omega +3{{\omega }^{2}}+.....+n{{\omega }^{n-1}}-\omega -2{{\omega }^{2}}-3{{\omega }^{3}}-.....-n{{\omega }^{n}} \right)
Let us solve the above expression and simplify it further, we get
Sn(1ω)=a(1+2ωω+3ω22ω2+4ω33ω3+.....+nωn1nωn)\Rightarrow {{S}_{n}}\left( 1-\omega \right)=a\left( 1+2\omega -\omega +3{{\omega }^{2}}-2{{\omega }^{2}}+4{{\omega }^{3}}-3{{\omega }^{3}}+.....+n{{\omega }^{n-1}}-n{{\omega }^{n}} \right)
Sn(1ω)=a(1+ω+ω2+ω3+.....+nωn1)naωn\Rightarrow {{S}_{n}}\left( 1-\omega \right)=a\left( 1+\omega +{{\omega }^{2}}+{{\omega }^{3}}+.....+n{{\omega }^{n-1}} \right)-na{{\omega }^{n}}
In the above expression, we can see there is a geometric progression, if we use the formula of geometric progression, we will get the value as 0. Therefore, (1+ω+ω2+ω3+......+ωn1)\left( 1+\omega +{{\omega }^{2}}+{{\omega }^{3}}+......+{{\omega }^{n-1}} \right) = 0, when ωn=1{{\omega }^{n}}=1. We get,
Sn(1ω)=a(0)naωn{{S}_{n}}\left( 1-\omega \right)=a\left( 0 \right)-na{{\omega }^{n}}
Sn(1ω)=0na(1)\Rightarrow {{S}_{n}}\left( 1-\omega \right)=0-na\left( 1 \right)
Sn=na(1ω)\Rightarrow {{S}_{n}}=\dfrac{-na}{\left( 1-\omega \right)}
Multiplying by – 1 on the numerator and denominator on the right-hand side of the equation, we get
Sn=na(ω1){{S}_{n}}=\dfrac{na}{\left( \omega -1 \right)}
Therefore, the value of the sequence is na(ω1)\dfrac{na}{\left( \omega -1 \right)}.

Note: In this question, we need to understand the basics of indices, the one formula of indices which is used in this particular question is am×an=am+n{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}. Geometric progression, also known as a geometric sequence, is a sequence of numbers where each term after the first is found by multiplying the previous one by a fixed, non-zero number called the common ratio.