Solveeit Logo

Question

Question: If n<sub>1</sub>, n<sub>2</sub>, n<sub>3</sub>,….., n<sub>100</sub> are positive real numbers such t...

If n1, n2, n3,….., n100 are positive real numbers such that n1 + n2 + n3 +….+ n100 = 20 and k = n1(n2 + n3 + n4)

(n5 + n6 +…. + n9) (n10 + ……+ n16) …. (…. + n100), then k

belongs to-

A

(0, 100]

B

(0, 128]

C

[0, 144]

D

None

Answer

None

Explanation

Solution

[n1+(n2+n3+n4)+(n5+n6++n9)\left[ \mathrm { n } _ { 1 } + \left( \mathrm { n } _ { 2 } + \mathrm { n } _ { 3 } + \mathrm { n } _ { 4 } \right) + \left( \mathrm { n } _ { 5 } + \mathrm { n } _ { 6 } + \ldots + \mathrm { n } _ { 9 } \right) \right. ++(+n100)]\left. + \ldots + \left( \ldots + \mathrm { n } _ { 100 } \right) \right] 10³ (AM

³ GM)

Ž 2 ³

Ž 0 < k £ 1024 .