Solveeit Logo

Question

Question: If \(n\pi + \frac{\pi}{3}\), then....

If nπ+π3n\pi + \frac{\pi}{3}, then.

A

nπ±π3n\pi \pm \frac{\pi}{3}

B

nn

C

(1cosθ+2isinθ)1(1 - \cos\theta + 2i\sin\theta)^{- 1}

D

13+5cosθ\frac{1}{3 + 5\cos\theta}or 135cosθ\frac{1}{3 - 5\cos\theta}

Answer

13+5cosθ\frac{1}{3 + 5\cos\theta}or 135cosθ\frac{1}{3 - 5\cos\theta}

Explanation

Solution

Given that y=0y = 0

sinθ=0\sin\theta = 0

θ=0\theta = 0

Equating real and imaginary parts, we get

x=1x = 1or x2+y2=12+0=1x^{2} + y^{2} = 1^{2} + 0 = 1and μ+iλ=(p+i)22pi=(p21+2pi)(2p+i)(2pi)(2p+i)\mu + i\lambda = \frac{(p + i)^{2}}{2p - i} = \frac{(p^{2} - 1 + 2pi)(2p + i)}{(2p - i)(2p + i)}

On solving we get =2p(p22)+i(5p21)4p2+1= \frac{2p(p^{2} - 2) + i(5p^{2} - 1)}{4p^{2} + 1}.