Solveeit Logo

Question

Question: If Normals at Pts $\alpha, \beta, \gamma, \delta$ on the Ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$...

If Normals at Pts α,β,γ,δ\alpha, \beta, \gamma, \delta on the Ellipse x2a2+y2b2=1\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 are congruent, then find cosαsecα=?\sum \cos\alpha \sum \sec\alpha=?

A

0

B

4

C

16

D

1

Answer

0

Explanation

Solution

The length of the normal segment from a point (acosθ,bsinθ)(a\cos\theta, b\sin\theta) on the ellipse to the x-axis is given by Lx(θ)=b1a2b2a2cos2θL_x(\theta) = b\sqrt{1 - \frac{a^2-b^2}{a^2}\cos^2\theta}. If the normals at α,β,γ,δ\alpha, \beta, \gamma, \delta are congruent, then Lx(α)=Lx(β)=Lx(γ)=Lx(δ)L_x(\alpha) = L_x(\beta) = L_x(\gamma) = L_x(\delta). This implies that cos2α=cos2β=cos2γ=cos2δ\cos^2\alpha = \cos^2\beta = \cos^2\gamma = \cos^2\delta. Let this common value be CC. Then cosθ=±C\cos\theta = \pm \sqrt{C}. For four distinct points, the set of cosine values must be {cosα,cosβ,cosγ,cosδ}={c,c,c,c}\{\cos\alpha, \cos\beta, \cos\gamma, \cos\delta\} = \{c, c, -c, -c\}, where c=Cc = \sqrt{C}. Then, cosα=c+c+(c)+(c)=0\sum \cos\alpha = c + c + (-c) + (-c) = 0. And secα=1c+1c+1c+1c=0\sum \sec\alpha = \frac{1}{c} + \frac{1}{c} + \frac{1}{-c} + \frac{1}{-c} = 0. Therefore, cosαsecα=(0)(0)=0\sum \cos\alpha \sum \sec\alpha = (0)(0) = 0.