Question
Question: If Normals at Pts $\alpha, \beta, \gamma, \delta$ on the Ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$...
If Normals at Pts α,β,γ,δ on the Ellipse a2x2+b2y2=1 are congruent, then find ∑cosα∑secα=?

A
0
B
4
C
16
D
1
Answer
0
Explanation
Solution
The length of the normal segment from a point (acosθ,bsinθ) on the ellipse to the x-axis is given by Lx(θ)=b1−a2a2−b2cos2θ. If the normals at α,β,γ,δ are congruent, then Lx(α)=Lx(β)=Lx(γ)=Lx(δ). This implies that cos2α=cos2β=cos2γ=cos2δ. Let this common value be C. Then cosθ=±C. For four distinct points, the set of cosine values must be {cosα,cosβ,cosγ,cosδ}={c,c,−c,−c}, where c=C. Then, ∑cosα=c+c+(−c)+(−c)=0. And ∑secα=c1+c1+−c1+−c1=0. Therefore, ∑cosα∑secα=(0)(0)=0.
