Solveeit Logo

Question

Question: If normal at the point \(P\left( \theta \right)\) to the ellipse \(\dfrac{{{x^2}}}{{14}} + \dfrac{{{...

If normal at the point P(θ)P\left( \theta \right) to the ellipse x214+y25=1\dfrac{{{x^2}}}{{14}} + \dfrac{{{y^2}}}{5} = 1 , intersects it again at the point Q(2θ)Q\left( {2\theta } \right) , then cosθ=\cos \theta = ?

Explanation

Solution

We can write the parametric equation of points on the ellipse using the given angle. Then we can find their slope. Then we can find the equation of the normal in the parametric form. Then we can equate the two slopes. Then we can simplify the equation using trigonometric identities and find the required trigonometric ratio.

Complete step by step solution:

We are given the equation of the ellipse as x214+y25=1\dfrac{{{x^2}}}{{14}} + \dfrac{{{y^2}}}{5} = 1 . On comparing with the standard equation of ellipse x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 , we can get the value of a and b.
a2=14\Rightarrow {a^2} = 14 and b2=5{b^2} = 5
We know that the point on an ellipse in the parametric form is given by (acost,bsint)\left( {a\cos t,b\sin t} \right) .
So, we can write the given points P and Q in its parametric form as,
P(θ)=(acosθ,bsinθ)\Rightarrow P\left( \theta \right) = \left( {a\cos \theta ,b\sin \theta } \right)
Q(2θ)=(acos2θ,bsin2θ)\Rightarrow Q\left( {2\theta } \right) = \left( {a\cos 2\theta ,b\sin 2\theta } \right)
Now we can find the slope of the line joining the points P and Q.
We know that slope of the line joining 2 points is given by,
m=y1y2x1x2m = \dfrac{{{y_1} - {y_2}}}{{{x_1} - {x_2}}}
On substituting the coordinates of the point, we get,
m1=bsin2θbsinθacos2θacosθ\Rightarrow {m_1} = \dfrac{{b\sin 2\theta - b\sin \theta }}{{a\cos 2\theta - a\cos \theta }}
We know that the slope of the normal is given by abtanθ\dfrac{a}{b}\tan \theta
As the normal passes through the points P and Q, we can equate the slope.
bsin2θbsinθacos2θacosθ=abtanθ\Rightarrow \dfrac{{b\sin 2\theta - b\sin \theta }}{{a\cos 2\theta - a\cos \theta }} = \dfrac{a}{b}\tan \theta
We know that tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} . On applying this and taking the common factors, we get.
b(sin2θsinθ)a(cos2θcosθ)=absinθcosθ\Rightarrow \dfrac{{b\left( {\sin 2\theta - \sin \theta } \right)}}{{a\left( {\cos 2\theta - \cos \theta } \right)}} = \dfrac{a}{b}\dfrac{{\sin \theta }}{{\cos \theta }}
We know that sin2A=2sinAcosA\sin 2A = 2\sin A\cos A and cos2A=2cos2A1\cos 2A = 2{\cos ^2}A - 1
b(2sinθcosθsinθ)a(2cos2θ1cosθ)=absinθcosθ\Rightarrow \dfrac{{b\left( {2\sin \theta \cos \theta - \sin \theta } \right)}}{{a\left( {2{{\cos }^2}\theta - 1 - \cos \theta } \right)}} = \dfrac{a}{b}\dfrac{{\sin \theta }}{{\cos \theta }}
We can take sine outside the bracket and bring ab\dfrac{a}{b} to the LHS. So, we get,
b2a2×sinθ(2cosθ1)(2cos2θ1cosθ)=sinθcosθ\Rightarrow \dfrac{{{b^2}}}{{{a^2}}} \times \dfrac{{\sin \theta \left( {2\cos \theta - 1} \right)}}{{\left( {2{{\cos }^2}\theta - 1 - \cos \theta } \right)}} = \dfrac{{\sin \theta }}{{\cos \theta }}
Now we can substitute the value of a and b and cancel the sin terms on both sides of the equation.
514×(2cosθ1)(2cos2θ1cosθ)=1cosθ\Rightarrow \dfrac{5}{{14}} \times \dfrac{{\left( {2\cos \theta - 1} \right)}}{{\left( {2{{\cos }^2}\theta - 1 - \cos \theta } \right)}} = \dfrac{1}{{\cos \theta }}
On rearranging, we get,
514=(2cos2θ1cosθ)cosθ(2cosθ1)\Rightarrow \dfrac{5}{{14}} = \dfrac{{\left( {2{{\cos }^2}\theta - 1 - \cos \theta } \right)}}{{\cos \theta \left( {2\cos \theta - 1} \right)}}
On cross- multiplying, we get,
5cosθ(2cosθ1)=14(2cos2θ1cosθ)\Rightarrow 5\cos \theta \left( {2\cos \theta - 1} \right) = 14\left( {2{{\cos }^2}\theta - 1 - \cos \theta } \right)
On opening the brackets, we get,
10cos2θ5cosθ=28cos2θ1414cosθ\Rightarrow 10{\cos ^2}\theta - 5\cos \theta = 28{\cos ^2}\theta - 14 - 14\cos \theta
On rearranging, we get,
28cos2θ10cos2θ14cosθ+5cosθ14=0\Rightarrow 28{\cos ^2}\theta - 10{\cos ^2}\theta - 14\cos \theta + 5\cos \theta - 14 = 0
On adding like terms, we get,
18cos2θ9cosθ14=0\Rightarrow 18{\cos ^2}\theta - 9\cos \theta - 14 = 0
Now we can split the middle term
18cos2θ21cosθ+12cosθ14=0\Rightarrow 18{\cos ^2}\theta - 21\cos \theta + 12\cos \theta - 14 = 0
On taking the common factors, we get,
3cosθ(6cosθ7)+2(6cosθ7)=0\Rightarrow 3\cos \theta \left( {6\cos \theta - 7} \right) + 2\left( {6\cos \theta - 7} \right) = 0
Again, on taking the common terms, we get,
(3cosθ+2)(6cosθ7)=0\Rightarrow \left( {3\cos \theta + 2} \right)\left( {6\cos \theta - 7} \right) = 0
When (6cosθ7)=0\left( {6\cos \theta - 7} \right) = 0 ,
6cosθ=7\Rightarrow 6\cos \theta = 7
On dividing throughout with 6, we get,
cosθ=76\Rightarrow \cos \theta = \dfrac{7}{6} This value of cos is not possible as its value cannot be greater than 1.
When (3cosθ+2)=0\left( {3\cos \theta + 2} \right) = 0
On rearranging, we get,
3cosθ=2\Rightarrow 3\cos \theta = - 2
On dividing throughout with 3, we get,
cosθ=23\Rightarrow \cos \theta = \dfrac{{ - 2}}{3}

So, the required value of cosθ\cos \theta is equal to 23\dfrac{{ - 2}}{3}.

Note:
Alternate solution to this problem is given by,
We are given the equation of the ellipse as x214+y25=1\dfrac{{{x^2}}}{{14}} + \dfrac{{{y^2}}}{5} = 1 . On comparing with the standard equation of ellipse x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 , we can get the value of a and b.
a2=14\Rightarrow {a^2} = 14 and b2=5{b^2} = 5
We know that the point on an ellipse in the parametric form is given by (acost,bsint)\left( {a\cos t,b\sin t} \right) .
So, we can write the given points P and Q in its parametric form as,
P(θ)=(acosθ,bsinθ)\Rightarrow P\left( \theta \right) = \left( {a\cos \theta ,b\sin \theta } \right)
Q(2θ)=(acos2θ,bsin2θ)\Rightarrow Q\left( {2\theta } \right) = \left( {a\cos 2\theta ,b\sin 2\theta } \right)
We know that equation of the normal to the point (x0,y0)\left( {{x_0},{y_0}} \right) is given by a2xx0b2yy0=a2b2\dfrac{{{a^2}x}}{{{x_0}}} - \dfrac{{{b^2}y}}{{{y_0}}} = {a^2} - {b^2} .
On substituting the coordinates of the point P, we get,
a2xacosθb2ybsinθ=a2b2\Rightarrow \dfrac{{{a^2}x}}{{a\cos \theta }} - \dfrac{{{b^2}y}}{{b\sin \theta }} = {a^2} - {b^2}
On simplification, we get,
axcosθbysinθ=a2b2\Rightarrow \dfrac{{ax}}{{\cos \theta }} - \dfrac{{by}}{{\sin \theta }} = {a^2} - {b^2}
It is given that point Q lines on the normal. So, its coordinates satisfy the equations on the normal.
a×acos2θcosθb×bsin2θsinθ=a2b2\Rightarrow \dfrac{{a \times a\cos 2\theta }}{{\cos \theta }} - \dfrac{{b \times b\sin 2\theta }}{{\sin \theta }} = {a^2} - {b^2}
We know that sin2A=2sinAcosA\sin 2A = 2\sin A\cos A and cos2A=2cos2A1\cos 2A = 2{\cos ^2}A - 1
a2×(2cos2θ1)cosθb2×2sinθcosθsinθ=a2b2\Rightarrow \dfrac{{{a^2} \times \left( {2{{\cos }^2}\theta - 1} \right)}}{{\cos \theta }} - \dfrac{{{b^2} \times 2\sin \theta \cos \theta }}{{\sin \theta }} = {a^2} - {b^2}
Now we can substitute the value of a and b and cancel the common terms
14(2cos2θ1)cosθ5×2cosθ=145\Rightarrow \dfrac{{14\left( {2{{\cos }^2}\theta - 1} \right)}}{{\cos \theta }} - 5 \times 2\cos \theta = 14 - 5
On multiplying throughout with cosθ\cos \theta , we get,
28cos2θ1410cos2θ=9cosθ\Rightarrow 28{\cos ^2}\theta - 14 - 10{\cos ^2}\theta = 9\cos \theta
On rearranging, we get,
18cos2θ9cosθ14=0\Rightarrow 18{\cos ^2}\theta - 9\cos \theta - 14 = 0
Now we can split the middle term
18cos2θ21cosθ+12cosθ14=0\Rightarrow 18{\cos ^2}\theta - 21\cos \theta + 12\cos \theta - 14 = 0
On taking the common factors, we get,
3cosθ(6cosθ7)+2(6cosθ7)=0\Rightarrow 3\cos \theta \left( {6\cos \theta - 7} \right) + 2\left( {6\cos \theta - 7} \right) = 0
Again, on taking the common terms, we get,
(3cosθ+2)(6cosθ7)=0\Rightarrow \left( {3\cos \theta + 2} \right)\left( {6\cos \theta - 7} \right) = 0
When (6cosθ7)=0\left( {6\cos \theta - 7} \right) = 0 ,
6cosθ=7\Rightarrow 6\cos \theta = 7
On dividing throughout with 6, we get,
cosθ=76\Rightarrow \cos \theta = \dfrac{7}{6} This value of cos is not possible as its value cannot be greater than 1.
When (3cosθ+2)=0\left( {3\cos \theta + 2} \right) = 0
On rearranging, we get,
3cosθ=2\Rightarrow 3\cos \theta = - 2
On dividing throughout with 3, we get,
cosθ=23\Rightarrow \cos \theta = \dfrac{{ - 2}}{3}
So, the required value of cosθ\cos \theta is equal to 23\dfrac{{ - 2}}{3} .