Solveeit Logo

Question

Question: If \(nC_{4},\mspace{6mu}^{n}C_{5}\) and \(nC_{6}\) are in A.P., then n =...

If nC4,6munC5nC_{4},\mspace{6mu}^{n}C_{5} and nC6nC_{6} are in A.P., then n =

A

7 or 14

B

7

C

14

D

None of these

Answer

7 or 14

Explanation

Solution

Given nC4,6munC5,6munC6nC_{4},\mspace{6mu}^{n}C_{5},\mspace{6mu}^{n}C_{6} are in A.P.

26mux6munC5=6munC4+nC62\mspace{6mu} x\mspace{6mu}^{n}C_{5} = \mspace{6mu}^{n}C_{4} +^{n}C_{6}

2nn56mu56mu=6munn46mu4+nn66mu6\frac{2\angle n}{\angle n - 5\mspace{6mu}\angle 5}\mspace{6mu} = \mspace{6mu}\frac{\angle n}{\angle n - 4\mspace{6mu}\angle 4} + \frac{\angle n}{\angle n - 6\mspace{6mu}\angle 6}2n56mu56mu=6mu1n46mu46mu+6mu1n66mu6\frac{2}{\angle n - 5\mspace{6mu}\angle 5}\mspace{6mu} = \mspace{6mu}\frac{1}{\angle n - 4\mspace{6mu}\angle 4}\mspace{6mu} + \mspace{6mu}\frac{1}{\angle n - 6\mspace{6mu}\angle 6}Multiplying throughout by n4\angle n - 4 6\angle 6, we get

2 x (n – 4) x 6 = 6 x 5 + (n – 4) (n – 5)

⇒ n2 - 21ln + 98 = 0

⇒ (n – 7) (n – 14) = 0

⇒ n = 7 or 14.